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Introduction

● In medical imaging tasks such as segmentation 
and biomarker identification, datasets often 
include multiple MRI contrasts like T1w, 
T1Gd, T2w, T2-FLAIR, T2-DWI, etc.

● Challenge: Some sequences are often missing 
from individual patient datasets:

○ Example: Dataset A may lack FLAIR, while Dataset B 
may be missing T1w and FLAIR.

● Impact: These missing sequences present 
challenges when directly using the dataset for 
modeling pubs.rsna.org/doi/full/10.1148/radiol.2021203786
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Why This Problem Matters to Us

● In the grant-funded ongoing project on 
identifying biomarkers for post-traumatic 
epilepsy (PTE) in traumatic brain injury 
(TBI) patients, we utilize MRI datasets like 
NICoE and TRACK-TBI

● These datasets have missing contrasts 
which makes it challenging for machine 
learning analysis

● Hence it’s crucial to develop data 
imputation techniques to avoid altering our 
existing model pipelines to effectively 
manage missing data

PTE Project Narrative Grant
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More info



Problem Statement

● Consider xi : multi-contrast 3D 
Brain MRI volume of sample i

● xi has dimension: CxWxHxD
○ In our task: C=4, W=H=240, D=155

● xi = [xi
(1), xi

(2), xi
(3), xi

(4)]
● xi may be missing one or more 

contrast xi
(k)
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● Say C be the set of all contrasts and 
C-k be the set of contrasts without k

● Our objective is to learn pk(x
(k)|x(C-k)) 

so that x(k) can be synthesised when 
other contrasts are known



Method 1 (Mixed Contrast Synthesis - MCS)
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Drawback of MCS

● Say, a model is trained using MCS method 
for T1, T1Gd, T2, FLAIR (Contrast set C1).

● Say our primary objective is Lesion 
detection on a dataset (with some missing 
contrasts) that has T1, DWI, T2 (Contrast 
set C2).

● The MCS model we trained on C1 wouldn’t 
be able to synthesise missing contrasts on 
C2 since they’re different.

● So MCS would only work if C1 and C2 are 
exactly same.
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Model
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Loss functions

● Various loss functions were 
considered to synthesize 
contrasts (along with uncertainty)

● The tumor segmentation results 
using these were suspiciously 
low (~10 DICE) so I kept 
uncertainty-prediction aside for 
now, to focus on a simpler 
problem first.
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Gaussian Log Likelihood Loss

Quantile Loss

* Contrasts shown here are for representational purpose
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Our implementation
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Dataset

● We use BraTS 2017 dataset
● This dataset is ideally used for 

Tumor Segmentation and contains 
no healthy subjects; every sample 
includes a tumor
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med.upenn.edu/cbica/brats2020/



Dataset Preprocessing
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Evaluation: Synthesis quality

● Evaluate the quality of generated MRI 
sequence images using:

○ Mean Squared Error (MSE)
○ Mean Absolute Error (MAE)
○ Peak Signal-to-Noise Ratio (PSNR)
○ Structural Similarity Index (SSIM)

■ measures similarity based on luminance, 
contrast, and structure
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Evaluation: Synthesis effectiveness

● To demonstrate the effectiveness of 
synthesis, select a downstream task 
like tumor segmentation on the BraTS 
dataset and compare the results using 
the Dice similarity coefficient

● Evaluate performance against 
segmentation without imputation (lower 
bound) and with complete data (upper 
bound)
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medium.com/@lfoster49203/



Results
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Brain Tumor Segmentation: Insights
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● As seen from these plots, T1Gd plays a 
vital role in segmenting Tumor Core 
and Enhancing Tumor regions

● So I considered dropping T1Gd 
contrast and replacing it with 
synthesized contrast to compare tumor 
segmentation results



T1Gd Synthesis
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* Contrasts shown here are for representational purpose



Results: T1Gd Synthesis
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Results: T1Gd Synthesis
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Results: T1Gd Synthesis
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HRC: Synthesizing MR Image Contrast Enhancement Using 3D High-Resolution ConvNets”, Chen 2023
MedGAN: “MedGAN:Medical image translation using GANs”, Armaniousetal 2020



Results: T1Gd Synthesis
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Ablation study

Size of model Loss function



Brain Tumor Segmentation
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Next Work
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Method 2 (Ensemble of Single Contrast Synthesis - ESCS)
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X, Y ∈ C
C = {T1, T1Gd, T2, FLAIR, …}
No. of models trained = [n(C)]2



Expected kernel for missing features in support vector machines 
(Anderson et al., 2011)
● The expected kernel is defined as the average similarity between two feature vectors, taking into account the 

uncertainty due to missing values. Mathematically, it is expressed as:

24

● Some examples of expected kernels:

○ Expected Inner Product Kernel:

○ Expected RBF kernel



SVM with missing features
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Solved by QP (Quadratic Programming)
Anderson et al (2011)

Solved by SOCP (Second Order 
Cone Programming)
Shivaswamy et al. (2006)



● Conditional Expected Kernel Embeddings for Robust Lesion Segmentation in 
Multimodal Brain MRI with Missing Modalities
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Estimate 
conditional 
probability of 
image 
modalities P(Xi)
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Appendix
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Contrast availability in TRACK-TBI

● For instance, in TRACK-TBI data (n=252), 
there are 9 different contrasts present

● But not all of them are available for every 
sample


