Contrast Synthesis with Uncertainty Estimation

Using Deep Learning Approach

Presenter: Sachin Salim

Advisor: Dr. Anand Joshi

Introduction

- In medical imaging tasks such as segmentation and biomarker identification, datasets often include multiple MRI contrasts like T1w, T1Gd, T2w, T2-FLAIR, T2-DWI, etc.
- Challenge: Some sequences are often missing from individual patient datasets:
 - Example: Dataset A may lack FLAIR, while Dataset B may be missing T1w and FLAIR.
- Impact: These missing sequences present challenges when directly using the dataset for modeling

pubs.rsna.org/doi/full/10.1148/radiol.2021203786

Why This Problem Matters to Us

- In the grant-funded ongoing project on identifying biomarkers for post-traumatic epilepsy (PTE) in traumatic brain injury (TBI) patients, we utilize MRI datasets like NICoE and TRACK-TBI
- These datasets have missing contrasts which makes it challenging for machine learning analysis
- Hence it's crucial to develop data imputation techniques to avoid altering our existing model pipelines to effectively manage missing data

PTE Project Narrative Grant

More info

Problem Statement

- Consider x_i: multi-contrast 3D
 Brain MRI volume of sample i
- x_i has dimension: CxWxHxD
 In our task: C=4, W=H=240, D=155
- $x_i = [x_i^{(1)}, x_i^{(2)}, x_i^{(3)}, x_i^{(4)}]$
- x_i may be missing one or more contrast x_i^(k)

- Say C be the set of all contrasts and C_{-k} be the set of contrasts without k
- Our objective is to learn $p_k(x^{(k)}|x^{(C_{-k})})$ so that $x^{(k)}$ can be synthesised when other contrasts are known

Method 1 (Mixed Contrast Synthesis - MCS)

Drawback of MCS

- Say, a model is trained using MCS method for T1, T1Gd, T2, FLAIR (Contrast set C1).
- Say our primary objective is Lesion detection on a dataset (with some missing contrasts) that has T1, DWI, T2 (Contrast set C2).
- The MCS model we trained on C1 wouldn't be able to synthesise missing contrasts on C2 since they're different.
- So MCS would only work if C1 and C2 are exactly same.

Synthesis

Model

Loss functions

- Various loss functions were considered to synthesize contrasts (along with uncertainty)
- The tumor segmentation results using these were suspiciously low (~10 DICE) so I kept uncertainty-prediction aside for now, to focus on a simpler problem first.

Gaussian Log Likelihood Loss

$$\mathrm{loss} = rac{1}{2} \left(\mathrm{log} \left(\mathrm{max} \left(\mathrm{var}, \; \mathrm{eps}
ight)
ight) + rac{\left(\mathrm{input-target}
ight)^2}{\mathrm{max} \left(\mathrm{var}, \; \mathrm{eps}
ight)}
ight) + \mathrm{const}$$

Quantile Loss

$$\rho_{\alpha}(y,\hat{y}) := \begin{cases} \alpha(y-\hat{y}) & \text{if } (y-\hat{y}) > 0 \\ (1-\alpha)(y-\hat{y}) & \text{otherwise.} \end{cases}$$
 median (\$\alpha\$=0.5) qL (\$\alpha\$=0.023) qH (\$\alpha\$=0.977)

^{*} Contrasts shown here are for representational purpose

Our implementation

Dataset

- We use BraTS 2017 dataset
- This dataset is ideally used for Tumor Segmentation and contains no healthy subjects; every sample includes a tumor

med.upenn.edu/cbica/brats2020/

Dataset Preprocessing

Evaluation: Synthesis quality

- Evaluate the quality of generated MRI sequence images using:
 - Mean Squared Error (MSE)
 - Mean Absolute Error (MAE)
 - Peak Signal-to-Noise Ratio (PSNR) $PSNR = 10 \cdot \log_{10} \left(\frac{MAX_I^2}{MSE} \right)$
 - Structural Similarity Index (SSIM)
 - measures similarity based on luminance, $SSIM(\mathbf{x}, \mathbf{y}) = \frac{(2\mu_x \mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$.

Evaluation: Synthesis effectiveness

- To demonstrate the effectiveness of synthesis, select a downstream task like tumor segmentation on the BraTS dataset and compare the results using the Dice similarity coefficient
- Evaluate performance against segmentation without imputation (lower bound) and with complete data (upper bound)

medium.com/@lfoster49203/

Results

Brain Tumor Segmentation: Insights

- As seen from these plots, T1Gd plays a vital role in segmenting Tumor Core and Enhancing Tumor regions
- So I considered dropping T1Gd contrast and replacing it with synthesized contrast to compare tumor segmentation results

DICE Score using all four contrasts

85.7

91.2

80

20

T1Gd Synthesis

^{*} Contrasts shown here are for representational purpose

Evaluation scores of gT1Gd (ground-truth) with sT1Gd (synthetic), Zero (empty), T1w and mT1Gd (mean)

	sT1Gd	Zero	T1w	mT1Gd
MSE	0.0008	0.0125	0.0048	0.0021
MAE	0.0116	0.0425	0.0211	0.0159
PSNR	31.7	19.3	26.3	27.2
SSIM	0.8719	0.8198	0.9412	0.8843

Comparison with other Medical Image Synthesis Methods

	Ours	HRC	MedGAN
MAE	0.012	0.029	N/A
PSNR	31.3	30.0	27.0
SSIM	0.872	0.923	0.901

HRC: Synthesizing MR Image Contrast Enhancement Using 3D High-Resolution ConvNets", Chen 2023 MedGAN: "MedGAN: Medical image translation using GANs", Armaniousetal 2020

Ablation study

Size of model

	(4, 8, 16)	(64, 128, 256)
MSE	0.0009	0.0008
MAE	0.0121	0.0116
PSNR	31.3	31.7
SSIM	0.8396	0.8719

Loss function

	MSE	MAE
MSE	0.0009	0.0012
MAE	0.0121	0.0138
PSNR	31.3	30.0
SSIM	0.8396	0.7976

Brain Tumor Segmentation

	WT	TC	ET	
Available	89.7	82.4	61.2	
Synthesized	89.7	69.2	47.4	
Mean	88.6	68.4	46.5	
Missing	89.2	75.8	49	

Next Work

Method 2 (Ensemble of Single Contrast Synthesis - ESCS)

Expected kernel for missing features in support vector machines (Anderson et al., 2011)

• The expected kernel is defined as the average similarity between two feature vectors, taking into account the uncertainty due to missing values. Mathematically, it is expressed as:

$$K_{\exp}(p_{X_i}, p_{X_j}) \stackrel{\triangle}{=} E_{X_i, X_j} [K(X_i, X_j)]$$
$$= \iint p_{X_i}(x_i) p_{X_j}(x_j) K(x_i, x_j) dx_i dx_j.$$

- Some examples of expected kernels:
 - Expected Inner Product Kernel: $K(x_i, x_j) = x_i^T x_j$

 \circ Expected RBF kernel $K(x_i,x_j) = \exp\left(-\frac{\gamma}{2}\|x_i-x_j\|^2\right)$

$$K_{\exp}^{\operatorname{rbf}}(p_{X_i}, p_{X_j}) = \frac{\exp\left(-\frac{1}{2}\left(m_i - m_j\right)^T \left(\Sigma_i + \Sigma_k + \gamma^{-1}I\right)^{-1}\left(m_i - m_j\right)\right)}{\left|\gamma \Sigma_i + \gamma \Sigma_j + I\right|^{\frac{1}{2}}}$$

SVM with missing features

Solved by QP (Quadratic Programming) Anderson et al (2011)

minimize
$$\frac{1}{2}c^{T}K_{\exp}c + C\sum_{i=1}^{n} \xi_{i}$$
s.t.
$$y_{i} \left(c^{T}k_{\exp,i} + b\right) \geq 1 - \xi_{i}$$

$$\xi_{i} \geq 0,$$
where
$$k_{\exp,i} \stackrel{\triangle}{=} \left[K_{\exp}(p_{X_{1}}, p_{X_{i}}), \dots, K_{\exp}(p_{X_{n}}, p_{X_{i}})\right]^{T}$$

Solved by SOCP (Second Order Cone Programming)
Shivaswamy et al. (2006)

$$\begin{aligned} & \underset{c,b,\xi}{\text{minimize}} \ \frac{1}{2} c^T \hat{K} c + C \sum_{i=1}^n \xi_i \\ & \text{s.t. } y_i \left(c^T \hat{k}_i + b \right) \geq 1 - \xi_i + \tau_i \| c \|_{\Sigma_i^k} \\ & \xi_i \geq 0 \end{aligned}$$

 Conditional Expected Kernel Embeddings for Robust Lesion Segmentation in Multimodal Brain MRI with Missing Modalities

Appendix

Contrast availability in TRACK-TBI

- For instance, in TRACK-TBI data (n=252),
 there are 9 different contrasts present
- But not all of them are available for every sample

