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Abstract. This research presents a novel approach to synthesize miss-
ing MRI contrasts with uncertainty estimation using a U-Net frame-
work based on quantile regression. Multi-contrast brain MRI data is
vital for comprehensive analyses in neurological conditions such as trau-
matic brain injury (TBI) and epilepsy, as different MRI contrasts provide
complementary information on brain structure and pathology. However,
challenges in clinical settings often lead to incomplete multi-contrast MRI
datasets, which complicates downstream analyzes, particularly in deep
learning applications that require consistent data across all contrasts.
Our method addresses this issue by generating missing MRI contrasts
from available contrasts while quantifying the uncertainty of these syn-
thesized images. We employ a U-Net architecture with quantile regres-
sion to predict both the missing contrasts and the associated uncertainty,
providing more reliable synthetic images for clinical and research applica-
tions. Experimental results demonstrate that this approach offers insights
into the reliability of the generated contrasts and enhances interpretabil-
ity in high-stakes applications.
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1 Introduction

Brain MRI data often consist of multiple contrasts, such as T1-weighted, T2-
weighted, FLAIR, which are generated by varying the imaging parameters to
emphasize different tissue properties like proton density, relaxation times, or
the presence of contrast agents[1]. Acquiring multi-contrast MRI data is crucial
because different MRI contrasts capture unique and complementary information
about brain structure and pathology[2][3]. For example, T1-weighted images are
ideal for assessing anatomical structures[4], T2-weighted images are sensitive
to water content and can detect edema[5], and FLAIR images are useful for
identifying lesions adjacent to cerebrospinal fluid[6]. Together, these contrasts
provide a comprehensive view of the brain, enabling more accurate diagnoses,
prognosis assessments, and detailed analyses for conditions like traumatic brain
injury (TBI) and epilepsy[7][8]. However, acquiring all desired MRI contrasts
is often impractical due to long scanning times, patient discomfort, equipment
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limitations, and high costs[9][10]. This can lead to datasets where some contrasts
are missing, such as TRACK-TBI data[11], posing a challenge for multi-contrast
analysis[12].

1.1 Contrast Synthesis for Handling Missing MRI Contrasts

The absence of specific MRI contrasts complicates further analysis, especially in
deep learning, where models often expect consistent input data with all contrasts
present[13][14]. Missing contrasts introduce variability in data, impacting the
model’s performance, particularly in tasks like segmentation or classification,
which rely on the full set of MRI contrasts for optimal accuracy[15][16]. To
address this, contrast synthesis techniques are used to synthesize the missing
MRI contrasts from the available ones[17]. By learning relationships between the
different contrasts, these models generate synthetic images that approximate the
missing contrasts, enabling complete multi-contrast analysis[18][19].

The contrast synthesis methods to generate MRI data can be categorized
into three different groups: mathematical image transformation, physics-based,
and data-driven approaches[20]. In this study, we follow a data-driven approach,
which is similar to mathematical transformation, except that the transformation
is not hand designed but learned from a data pool using deep neural networks.
The dataset used in this study contains complete contrast information, facili-
tating the model’s ability to effectively learn the relationships between different
MRI contrasts for data reconstruction.

1.2 Uncertainty Estimation for Synthesized MRI Contrasts

It is critical to estimate the uncertainty of these synthesized contrasts since
they are based on predictions[21][22]. Uncertainty estimation helps quantify the
model’s confidence in the generated images, which is essential for downstream
applications like medical diagnosis, where high stakes decisions rely on reliable
data. This is particularly important when working with deep neural networks
(DNNs), as these models are often poorly calibrated[23]. In addition to capturing
model limitations, uncertainty measures can also provide valuable insights into
the inherent variability present in the data[24]. Incorporating uncertainty into
contrast synthesis provides clinicians and researchers with a better understand-
ing of potential errors, allowing for more informed and cautious interpretations
of the synthetic data[25][26].

1.3 Quantile Regression for Capturing Uncertainty

Quantile regression is a method that estimates conditional quantiles of the re-
sponse variable, rather than predicting the mean as in standard regression[27][28].
It captures a fuller range of possible outcomes, making it especially valuable
for uncertainty estimation[29]. In contrast synthesis methods for MRI, quantile
regression can generate multiple estimates for a missing contrast, providing a
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distribution of possible outcomes instead of a single prediction. This enables the
model to quantify uncertainty by assessing the spread between lower and upper
quantiles, which reflects the model’s confidence in the synthesized image[29]. Un-
like mean/variance regression, which focuses on average predictions and assumes
a symmetric error distribution, quantile regression does not rely on any distri-
butional assumptions and can capture asymmetric and more complex patterns
in data. This flexibility is advantageous in medical imaging, where pixel-level
uncertainties are often non-uniform and where reliable confidence intervals are
crucial for accurate diagnosis and clinical interpretation[30].

2 Methods

2.1 Dataset and Preprocessing

The publicly available BraTS 2017 dataset [31] was utilized for training and
evaluating our QR U-Net model as well as the downstream brain tumor seg-
mentation task. This dataset comprises complete T1w, T2w, T1Gd, and FLAIR
MRI scans from 388 subjects diagnosed with glioblastoma. Subject ID 65 was
excluded from the analysis due to a significantly large tumor region that dis-
rupted the model’s ability to learn its representation effectively. All images in
the dataset are pre-aligned and have an identical isotropic voxel size of 1 mm.
Tumor annotations for each subject were obtained by aggregating voxel-wise la-
bels for the enhancing tumor, peritumoral edema, and necrotic/non-enhancing
tumor core regions. For both the QR U-Net model and the downstream segmen-
tation task, the dataset was divided into a training set of 310 subjects and a test
set of 77 subjects.

The following preprocessing steps were applied to both the training and test
datasets. Tumor labels were first converted into binary one-hot vectors. The
MRI scans were reoriented according to the RAS axcode, and non-zero intensity
values were normalized to have zero mean and unit standard deviation for each
channel. For the training data, random data augmentation was performed, which
included cropping to a region of interest (ROI) of size 64×64×64 with a randomly
selected center, flipping along each axis with a 50% probability, and scaling and
shifting the intensity values by factors uniformly sampled from the range 0.9 to
1.1. For the tumor segmentation model, instead of directly cropping to an ROI
of 64×64×64, the data was initially cropped to a larger ROI of 224×224×144.
This was followed by resizing to 64×64×64, ensuring that the tumor region was
included in most of the training samples.

2.2 Quantile Regression

To reconstruct missing MRI contrasts, our method utilizes a 3D U-Net archi-
tecture integrated with quantile regression, a robust statistical approach that
models specific conditional quantiles of the target variable rather than the mean.
This technique provides not only the central estimate of the data but also cap-
tures the uncertainty associated with the reconstruction process. We employed
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Quantile regression to estimate the conditional median (50th percentile) and
additional quantiles, specifically the upper quantile QH (e.g., 95th percentile)
and lower quantile QL (e.g., 5th percentile). The median quantile represents the
most likely reconstructed value, minimizing the influence of outliers, whereas the
upper and lower quantiles capture the range of uncertainty.

To train the model, we employed the quantile loss function, which is defined
for a given quantile τ as:

Lτ (y, ŷ) =

n∑
i=1

max(τ(yi − ŷi), (τ − 1)(yi − ŷi)).

Here, yi is the ground truth, and ŷi is the predicted quantile value. The loss
encourages the network to predict values that correspond to the desired quantiles
by penalizing over- and underestimation appropriately.

The final loss function combines the quantile losses for all contrasts:

Ltotal =
∑

contrast

(LQM
+ LQH

+ LQL
).

2.3 Implementation Details

Our method was implemented using PyTorch [32] and MONAI [33] frameworks
and executed on a single NVIDIA A100 GPU. A 3D U-Net architecture [34] was
designed for the reconstruction task, featuring a channel configuration of 4, 8,
and 16 in the top, middle, and bottom blocks, respectively. The model employed a
stride length of 2 and included two residual units, resulting in approximately 25k
parameters. The network accepted 4 input channels, corresponding to the four
MRI modalities, and produced 12 output channels, representing the 3 predicted
quantiles for each modality. For the downstream brain tumor segmentation task,
the implementation adhered to the publicly available code in the Project-MONAI
GitHub repository.

Masking To simulate missing data inputs and train the model for reconstruct-
ing MRI contrasts, the dataset was systematically preprocessed to mask specific
contrasts in each sample. The masking process was as follows:

Step 1. Probability Lookup Table Initialization: A predefined probability
table was established to represent the approximate likelihood of a particular
contrast being unavailable. Based on insights from prior studies [35] [36], the
probabilities were set to 40% for FLAIR, 12% for T1w, 30% for T1Gd, and 15%
for T2w. These values reflect a general approximation, acknowledging that the
availability of MRI contrasts can vary across different datasets and studies.

Step 2. Mask Generation: A 2D Boolean array, representing the presence or
absence of each contrast for every input sample, was generated. Each element
in the array was determined via a Bernoulli trial using the corresponding prob-
ability from the lookup table. A value of True indicated that the contrast was
masked for that sample.
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Fig. 1. Workflow illustrating the QR-UNet model: MRI contrasts with masked inputs
are processed by a 3D U-Net, which outputs three quantiles (median, upper, and lower).
Loss is computed for each quantile against the ground truth, guiding updates to the
model parameters.

Step 3. Ensuring Validity of Samples: To avoid generating samples where
all contrasts were masked (which would render the data unusable), an iterative
correction process was employed. For samples where all contrasts were masked,
Step 2 was reapplied until no such cases remained. Typically, this procedure
converged within 2–3 iterations.

Fig. 2. Illustration of the first 200 samples of the masking matrix used during training,
showing the distribution of missing MRI contrasts across the dataset. Each row rep-
resents a sample, and each column corresponds to a contrast, with masked contrasts
indicated.

The resulting masking matrix, generated using this algorithm, is illustrated
in Figure 2, highlighting the distribution of missing contrasts across the training
dataset.
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3 Experiments and Results

Fig. 3. The output of the QR-UNet model, evaluated on the 77th slice in the axial
view of the BRATS 328 MRI image. In this case, the FLAIR and T2w contrasts were
masked (shown here for reference), while the T1w and T1Gd contrasts were provided
as input to the model. The second row displays the median output (τ=0.5), and the
third row highlights the outlier regions, identified by filtering pixels with intensities
exceeding the upper quantile (τ=0.977) or below the lower quantile (τ=0.023). The
outlier filtering effectively captures the tumor region in an unsupervised manner.

Table 1. Comparison of PSNR and SSIM values for different MRI combinations.

T1 T1+T2 T1+T2+FLAIR

PSNR 34.8 35.3 35.3
SSIM 0.898 0.910 0.909

4 Conclusion
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