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Abstract—This report explores closed-loop seizure mit-
igation. This requires a detector that can indicate seizure
onset and a controller that can provide timely stimulation
to stop the seizure. A machine-learning classifier is used to
detect seizures and evaluate it on both real and simulated
data. Control schemes that can stop a seizure in different
simulation models are studied. Ultimately, these methods
are far-removed from anything that would work robustly
in practice, but this exploration offers insights into the
challenges of successful seizure prevention.

I. INTRODUCTION

LOSED-loop control aims to use real-time
Cdata to detect epileptic seizures and deliver
targeted electrical stimulation to the brain. This
emerging field has the potential to improve the
quality of life for people with epilepsy by reducing
the frequency and severity of seizures. Advances
in computation and machine learning has given
rise to new techniques for better seizure mitigation.
Mathematical frameworks have been developed to
help predict and control seizure activity in highly
personalized settings [1].

Numerous researchers work on modeling and
experimentally verifying the dynamics of seizures.
In this report, we rely on a model proposed by Suf-
fczynski et al. [2], as well as a model proposed by
Liou et al. [3] that more faithfully captures the spa-
tial connection between neurons. Detection schemes
involving feature-based thresholding and multiple
machine learning models are demonstrated. Closed
loop control is demonstrated using a Simulink
model that incorporates a basic form of artefact
mitigation. We further explore synchronized control
based on the 2D rate model for the management of

epilepsy.

II. SEIZURE MODELS

A. Thalamocortical Seizure Model

The thalamocortical circuit model [2] improves
on the model proposed by Lopes da Silva et al. [4].
It incorporates low-threshold calcium currents [5] of
the thalamic cells and both fast GABA, and slow
GABAg receptor-mediated inhibitions.

The Thalamic loop consists of a population of
thalamocortical (TC) cells and Reticular Thalamic
(RE) cells. The Cortical loop consists of Pyramidal
Cells (PY) and Inhibitory Cells (IN). The RE in-
hibits TC through GABAa and GABADb pathways.
The TC receives excitatory input from the ascend-
ing pathway (Sensory). The RE receives inhibitory
input from the surrounding RE population. PY cells
receive excitatory input from surrounding PY pop-
ulations. PY excites TC and RE, while TC excites
PY and IN. Recording and stimulative interaction
is carried out at the Pyramidal cells. Figure 4
represents the model and the closed-loop control
introduced as a part of this work.

Receptors: GABA, receptors are responsible for
fast synaptic inhibition. GABAg receptors are re-
sponsible for slow synaptic inhibition. AMPA recep-
tors facilitate depolarization of the membrane and
increase the likelihood of the neuron firing.

B. Underlying Spatio-temporal Patterns

In order to view a complementary simulation
with respect to the one above, we explore a seizure
model presented by Liou et al. [3] which, among
other things, simulates the mechanisms that are
hypothesized to cause seizures and produces spatio-
temporal patterns that correspond to the canonical
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stages of a seizure. They identify patterns corre-
sponding to the tonic-clonic transition, slow advance
of seizure territory expansion, widespread EEG syn-
chronization, and slowing of the ictal rhythm. In
this paper, the primary model used for simulation
was a ‘2D-Rate-Model, (shown in Figure 5) which
models the neocortex as a 2-dimensional neuron
sheet, with neurons that are recurrently connected
by direct excitatory projections, and also inhibit
each other indirectly through di-synaptic pathways
via inter-neurons [3]. This simulation generates 2D
visualizations of the voltage and ion concentrations
across a 2D brain.

III. METHODS

The challenge of robust seizure detection and
control is highly complex because of high individual
variability and lack of high-fidelity data. With that
being said, we try to gain an intuition for different
components that are needed for a seizure controller
by approaching the following sub-problems:

o Seizure Detection: We explore a simple fea-
ture detector and a machine-learning approach
in classifying seizures.

o Closed-Loop Control: Stimulating impulses
of different modalities are used for closed-loop
control.

A. Seizure Detection
1) Simple feature Detection

A Simulink Model is designed to detect seizures
based on Line length. This feature was chosen due
to its simplicity, reliability, and ability to detect
changes in signal morphology, as we learned from
the lab on seizure detection. The data was sampled
at 500Hz and sectioned into overlapping bins of
200ms. The line length threshold was decided based
on an analysis of 10 randomly generated 100-second
waveforms.

2) Machine Learning based Detection

The seizure detection was improved with a ma-
chine learning model trained on real EEG data col-
lected from the UCI Machine Learning Repository

[6]. The dataset consisted of 500 individuals, each
with 4097 data points representing a recording of
brain activity for 23.6 seconds. These data points
were divided and shuffled into 23 chunks, each con-
taining 178 samples of 1 second. The last column
in each chunk represented the label, which was
categorized into five classes representing different
states of brain activity. To detect seizures, the non-
seizure classes were combined to make it a binary
classification problem, with 9200 records belonging
to the non-seizure class and the rest 2300 records
belonging to the seizure class. Some of these signals
are visualized in Figure 6.

The data was split into training and testing with
80-20 ratio. Prior to analysis, the data was stan-
dardized to ensure consistent scale and variance
across features. Logistic Regression, Support Vector
Machine (SVM), k-Nearest Neighbors (kNN), and
Gaussian Naive Bayes algorithms were used to
compare the performance. The model with the best
performance was chosen to detect the seizures sim-
ulated by the Simulink model. Simulink generated
multiple 100-second signals with different seeds,
each sampled at 1KHz. However, the Machine
Learning model used for seizure prediction was
trained on data sampled at 178Hz. The signals were
resampled at 178Hz using linear one-dimensional
interpolation and divided into 100 chunks of 1
second each. The best ML model was then used to
classify each chunk as either seizure or non-seizure.
This information is utilized to develop control sig-
nals for closed-loop systems.

B. Closed loop Control

Seizure Control was implemented using the block
diagram shown in Figure 1. Figure 9 shows the
entire Simulink model. After feature extraction and
thresholding, short 100ms pulses of stimulation are
applied to the network at the onset of seizures. The
recording and stimulation are applied to the pyra-
midal cells to better simulate the constraints of real
closed-loop control. Artefact mitigation is achieved
through logic designed to disable recordings during
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Fig. 1: Block Diagram of Seizure Control implemented in Simulink

ongoing stimulations. The stimulus is applied using
different current pulses.

1) Control of 2D rate model

To determine the generalizability of the simple
voltage-pulse control method, we also applied a
similar synchronized pulse to the 2D-Rate-Model
of Liou et al. [3], which simulates the evolution
of seizures over time and space. The initialization
parameters of the 2D-Rate-Model are chosen so
as to spontaneously generate a seizure. Different
Lengths, strengths, and timing of the neural impulse
are studied. It is possible to end the patterns by
applying a synchronized voltage pulse with duration
and amplitude on the order of 30ms, 200 pA.
Sometimes the seizure would end spontaneously, but
about 3 out of 10 times, the synchronized pulse was
the only way to end the seizure.

IV. RESULTS

A. Seizure Detection

The classification accuracy obtained for each of
the four machine learning models are tabulated
below in Table I. Among these different machine
learning models evaluated for seizure classification
on the simulated data, SVM performed the best and
was therefore selected for the task.

Accuracy
Algorithm | Training | Testing
Accuracy | Accuracy
LgR 82.27% 82.22%
SVM 98.25% | 96.96 %
kNN 93.85% 92.78%
gNB 95.74% 95.83%

TABLE I: Classification accuracy of the machine
learning models

B. Seizure Control

Can mitigation be achieved for different pulse
width and stimulating currents? Seizure Control
was demonstrated using different stimulating pulses.
Figure 2 represents stimulation with varying am-
plitudes of stimulating currents. Mitigating can be
achieved more quickly with higher stimulating cur-
rents. Mitigation was achieved after applying SmA
pulses for 2.5 seconds (Fig.2 B,C), whereas 10mA
pulses for only 0.5 seconds were needed to achieve
the same result (Fig.2 D,E). Another key aspect of
the closed-loop stimulation algorithm is the artefact
mitigation. Fig 10 A shows a neural waveform with
seizure. If stimulation is performed without artefact
mitigation we get Fig 10 C. This is because the
stimulations are perceived as artefacts. After artefact
mitigation we obtain the waveform seen in Fig 10
E.
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Fig. 2: A. Regular neural activity. B. SmA stim-
ulation based on closed-loop control, C. Neural
activity with SmA stimulation, D. 10mA stimulation
based on closed loop control, E. Neural activity with
10mA stimulation

C. Controlling the 2D-Rate-Model

Can understanding the underlying spatiotemporal
pattern help decrease stimulating power? A synchro-
nized control was applied to the 2D-Rate-Model to
mitigate the seizure pattern. The evolution of the
seizure is shown in Figure 3, as well as the clear
diminishing of the seizure when a synchronizing
input was applied. The 2D rate model required
a control input of the order of 30ms, 200 uA
to control the seizure. The Thalamocortical Model
however required at least SmA of stimulation for
200ms. Although these models cannot be directly
compared, it is clear that understanding the un-
derlying spatio-temporal patterns can significantly
decrease the stimulating current and allow for low-
power devices.

V. DISCUSSION

This work takes a broad approach to seizure
detection and control, presenting a seizure classifier
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Fig. 3: Seizure evolution generated by a 2D-Rate-
Model. Three out of ten simulations continue in-
definitely in a spiral pattern, which is analogous to
”seizure epilepticus” (prolonged seizure) symptoms.
In the end, a synchronizing input is applied that ends
the seizure.

as well as control schemes that works in a simulated
environment. Consequently, there exists scope for
improvement within each specific sub-task. There
are many problems to solve before these techniques
provide a fully robust cure for epileptic seizures.
That being said, they are critical in the pursuit
of understanding the origins of seizures and more
broadly the delicate balance that normally allows
our brain to accomplish great feats on a daily basis.

The machine learning models can be imple-
mented on an FPGA and studied to understand
performance and power constraints. Another novel
approach is to pipeline classification into two stages.
The EEG signals are decomposed using discrete
wavelet transform into features in the first stage fol-
lowed by the use of a deep neural network classifier.
The work by Sayeed et al. [7] demonstrates this
while analyzing hardware constraints.

The clear flaw in the control algorithms is that
these techniques were able to stimulate all neurons
simultaneously and precisely, which is far removed
from any control scheme that could be implemented
using actual electrodes. An interesting extension of
the 2D rate model would be to create an electrode
in the simulated environment and see how localized
inputs could still disrupt and end the patterns of the
seizure [8].
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APPENDIX

A. Figures
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Fig. 4. Block Diagram of Siezure Model. Green lines indicate excitatory AMPA pathways. Red lines
indicate inhibitory pathways
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Fig. 5: 2D-Rate-Model schematic from Liou et.al. [3] Red circles: model neurons. Blue circles: inhibitory
neurons. Red Arrows: excitatory recurrents. Blue arrows: di-synaptic recurrent inhibition. Green Arrows:
Control Input (strength of connections is distance-dependent and indicated by arrow dashes). All neurons
are connected in the same pattern, even if not shown.
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Fig. 6: Some of the seizure and non-seizure EEG signals from UCI ML Dataset
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Fig. 7: Detection of seizure using SVM trained on UCI dataset on two different signals generated by
Simulink model. The red vertical lines correspond to the seizure detections, and blue lines represent the
actual signal
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Fig. 8: Detections of seizure using SVM trained on UCI dataset on 14 different signals generated by
Simulink model. The red vertical lines correspond to the seizure detections, and blue lines represent the

actual signal
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