
1

Predicting prosthetic finger kinematics in
non-human primates using reinforcement learning

EECS 599 – Report

Sachin Salim
Mentor: Joseph Costello

Supervisor: Prof. Cynthia Chestek
CNPL - University of Michigan

I. INTRODUCTION

There has been considerable development and in-
terest in brain-machine interfaces aimed at restoring
motor function over the last decades. However, the
capabilities of prosthetic limbs and fingers are still
limited in replicating native function. One major
limitation in achieving natural and rapid finger
movements is the algorithm that converts brain sig-
nals into control signals for the prosthetic device. In
order to address this limitation and improve the ac-
curacy of prosthetic finger movements, researchers
have been investigating the potential of machine
learning algorithms [1] [2]. This research focuses on
exploring the use of reinforcement learning methods
to decipher finger movements and predict the kine-
matics in real-time, using a noisy kinematics data
generated by a simulation. A closed-loop control
system is used to update the position and velocity
of the finger from the observation from the envi-
ronment, which is one of the unique challenge this
experiment tries to address. We believe that this
study inspires further research on the use of neural
networks in creating brain-controlled prostheses that
can closely mimic natural movements.

II. METHODS

A. Environment

1) Setup: A simulation environment is created
for studying continuous finger movement target-

acquisition tasks with variable degrees of freedom.
The environment is responsible for generating the
targets, providing an observation (current state) to
the user, and in managing trails. The user may
move using commands on position or velocity, and
succeeds the experiment if the position is held
within the size of target for a period specified by
hold-time. The next target is shown as soon as the
trial is completed. Optionally, perturbations may be
added which could alter the position at a given
probability during the hold period. The environment
is implemented in Python gymnasium (Open AI)
which provides standard APIs for implementing
reinforcement learning.

2) State and Actions: The target positions for
each degree-of-freedom are represented in one di-
mension (within [0, 1] by default). These targets
may be chosen from a set of finite values or from a
continuous range uniformly randomly. There is also
an option to decide if the targets should alternate
between the center position and rest of the positions
so as to make a center-out movement. In each step,
the user/agent takes an action as position or velocity
which updates the current state. The position takes
values in [0, 1] range whereas velocity lies in [-
1, 1] range. If the current position stays within the
size of the target for a sufficient period of time, the
episode is deemed as successful. Depending on the
experiment, the agent may observe various states

2

such as the current position, velocity, or a noisy
desired velocity.

3) Baseline Algorithm: In order to guide the
agent towards taking the correct sequence of actions
that lead to success in the environment, a baseline
algorithm must first be defined for comparison pur-
poses. Initially, a random action was considered as
the baseline algorithm, but it did not yield success
in a reasonable amount of time. Therefore, a new
baseline algorithm was defined to take the action of
the observed desired velocity from the environment.
The desired velocity is calculated by the environ-
ment as a linear function of the distance remaining
to the target, and some gaussian noise is added
to make it more realistic. This noise factor was
included because the desired velocity predicted by
a model (such as an RNN) based on neural data
may not be entirely precise. The standard deviation
of the added noise was determined in such a way
as to achieve a 90% success rate with the baseline
algorithm.

B. Reinforcement Learning

To predict the optimal action based on observa-
tions, a Reinforcement Learning (RL) model was
introduced. This was achieved using RLlib-Ray, an
open-source library designed to support highly dis-
tributed RL workloads at a production-level scale. In
implementing the RL model, the main challenges in-
volved defining an appropriate reward function and
configuring the right parameters for the algorithm.

1) Reward: Rewards and in particular the reward
function is an important modeling component for
any RL problem. Various ideas were attempted to
achieve an efficient way for the model to train on.
The ultimate goal was to encourage the agent to
move towards the target and remain close to it.
Additionally, the agent had to be discouraged from
moving slowly, and from overshooting the target.
Hence, a reward function that provides punishment
which increases a function of the distance to the
target was implemented. Some initial attempts to
model the reward was later discarded because of its

complex definition. A simpler reward function was
finally decided as shown in equation 1.

r =

1 if succeeds the episode

0 if in the target
−1
T

if outside the target

(1)

where T is the number of timesteps it takes for
the episode to timeout. To avoid overly punishing
the agent, the negative reward for each timestep was
scaled down. Specifically, the minimum return that
the agent can receive in an episode was set to -1.
This ensures that the return is positive only if the
agent is successful. If the agent achieves a return
close to 1, it means that it succeeded quickly in the
task.

2) Building and training the algorithm: Since
this is a problem involving continuous action spaces,
PPO (Proximal Policy Optimization) was used to
train the RL decoder. PPO is a reinforcement learn-
ing algorithm used to optimize policies for Markov
decision processes (MDPs), proposed by OpenAI
in 2017 as an improvement over previous policy
gradient methods. The implementation of PPO was
readily available in the algorithms package of RL-
Lib.

The config settings of the algorithm were updated
to extract maximum performance while training.
The system used to train the model was CNPL-
Brainiac, a Windows 10 machine with an intel core
processor 3.6GHz 128GB RAM. The performance
speed of training was compared by varying the
number of rollout workers for parallel sampling
between 1 and 8.

The algorithm was then instantiated using the
config object’s build method so that this can be
trained. It is important to register the environment
with ray using an environment specifier (a unique
name) using the tune API. It was then trained using
train API and the algorithm as well as the results
were saved every 10 iterations. A learning rate of
10−4 and a discount factor of 0.99 was used. In 1
training iteration, 100 episodes were run.

3

III. RESULTS

A. Training the algorithm

1) Performance speed: The performance speed
of training was compared by varying the number
of rollout workers between 1 and 8. The result is
shown in Figure 1. It is observed that more rollout
workers increased the speed of the training. There
was a 38% decrease in the amount of time taken
for training with 8 rollout workers compared to just
one worker.

Fig. 1. Speed of training of PPO Algorithm for various number of
rollout workers

2) Learning the action: The training process
recorded the mean reward every 10 iterations, and it
was observed that the algorithm struggled to learn
accurate action predictions as the environment had
more potential target positions. The correspond-
ing figure (Figure 3) indicates that the algorithm
achieved optimal learning after approximately 200
iterations when there were only 2 target positions.
However, when the number of targets exceeded 4,
the algorithm encountered difficulty in comprehend-
ing the correct actions.

B. Evaluating the algorithm

To evaluate the performance of the algorithm,
1000 episodes were run with the aaction being pre-
dicted by the algorithm. The percentage of episodes

they were able to win is tabulated in I. The ac-
curacy of the baseline algorithm is also provided
for reference. To further visualize the results, the
position of the finger is plotted for 60,000 timesteps
with the desired velocity being predicted by the PPO
algorithm. This is illustrated in 2.

Number of Success
target positions Rate

2 99.7%
3 99.1%
4 93.4%
5 7.3%
6 0.2%

Baseline 90.12%
TABLE I

PERCENTAGE OF EPISODES THE ALGORITHM SUCCEEDS IN;
WITH DIFFERENT NUMBER OF TARGET POSITIONS

IV. CHALLENGES FACED

There were quite a few challenges while trying to
setup RLLib. This was initially being trained using
the free version of Google Colab, which disallowed
the use of multiple rollout workers. The training was
later shifted to a Linux Machine (CNPL-Parasite)
which had trouble building the algorithm because
of the incompatibility between the cuda versions
of the system and the ray cluster. The environment
implementation in Gym faced an additional chal-
lenge when it was moved to Gymnasium, resulting
in several incompatibility errors that had to be
addressed.

V. OTHER WORKS

A. Tuning hyper-parameters of feed-forward neural
network

In addition to the primary research on Reinforce-
ment Learning, another task I had worked was to
determine the optimal time-history and bin-size that
would enhance the performance of a feed forward
network. It involved modifying a Python Jupyter
notebook that loaded neural and finger data, trained
a recurrent neural network, and generated plots of

4

Fig. 2. The position of the finger with the desired velocity predicted by the RL algorithm. The target positions are represented by horizontal
orange stripes, with the width of each stripe indicating the size of the corresponding target. The end of an episode is marked by vertical
dashed lines, with green lines representing a successful episode and red lines indicating a failed one.

Fig. 3. Comparison of overall rewards (return) for environments with
different number of possible target positions. When the training plot
crosses the dashed orange line (reward 0), it indicates the algorithm
has began winning episodes. When the plot reaches close to the
dashed green line (reward 1), the algorithm is winning almost all
the episodes.

the decoded finger kinematics. The objective was to
replace the RNN with a feedforward network and
conduct the performance analysis. A grid search was
conducted on a predetermined set of time-history
and bin-size values to evaluate the correlation and
mean-squared error (MSE) of the model results.
From the Figure 4, it can be seen that a bin size
of around 200ms and a time history of around 5
bins yield the best results.

VI. DISCUSSION

The successful performance of Reinforcement
Learning in accurately predicting the appropriate
action and outperforming the baseline algorithm for
a smaller number of target positions is a promising
outcome. However, further investigation is neces-
sary to determine the cause of its failure with
a greater number of target positions. To address
this, future research [3] will involve providing both
position and velocity data to the RL decoder ob-
tained from neural data using an alternate decoder
like RNN. Additionally, the RL decoder could be
directly fed with neural data to improve its ability
to predict position accurately.

REFERENCES

[1] M. S. Willsey, S. R. Nason-Tomaszewski, S. R. Ensel, H. Tem-
mar, M. J. Mender, J. T. Costello, P. G. Patil, and C. A.
Chestek, “Real-time brain-machine interface in non-human pri-
mates achieves high-velocity prosthetic finger movements using
a shallow feedforward neural network decoder,” Nature Commu-
nications, vol. 13, no. 1, p. 6899, 2022.

[2] M. N. Almani and S. Saxena, “Recurrent neural networks con-
trolling musculoskeletal models predict motor cortex activity dur-
ing novel limb movements,” in 2022 44th Annual International
Conference of the IEEE Engineering in Medicine & Biology
Society (EMBC), pp. 3350–3356, IEEE, 2022.

[3] B. Girdler, W. Caldbeck, and J. Bae, “Neural decoders using
reinforcement learning in brain machine interfaces: A technical
review,” Frontiers in Systems Neuroscience, vol. 16, 2022.

5

[4] S. R. Nason, A. K. Vaskov, M. S. Willsey, E. J. Welle, H. An,
P. P. Vu, A. J. Bullard, C. S. Nu, J. C. Kao, K. V. Shenoy, et al.,
“A low-power band of neuronal spiking activity dominated by
local single units improves the performance of brain–machine in-
terfaces,” Nature biomedical engineering, vol. 4, no. 10, pp. 973–
983, 2020.

[5] F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson,
and K. V. Shenoy, “High-performance brain-to-text communica-
tion via handwriting,” Nature, vol. 593, no. 7858, pp. 249–254,
2021.

[6] J. C. Sanchez, A. Tarigoppula, J. S. Choi, B. T. Marsh, P. Y.
Chhatbar, B. Mahmoudi, and J. T. Francis, “Control of a center-
out reaching task using a reinforcement learning brain-machine
interface,” in 2011 5th International IEEE/EMBS Conference on
Neural Engineering, pp. 525–528, IEEE, 2011.

VII. APPENDIX

6

Fig. 4. Heatmap of correlation and MSE of decoding neural data using a feed forward neural network.

Predicting prosthetic finger kinematics in
non-human primates using reinforcement
learning
Authors: Sachin Salim (sachinks), Joseph Costello (costellj)

Environment

Source code

In [1]: ROOT_DIR = ''

In [2]: # import all the libs
import gymnasium as gym
from gymnasium import spaces
from gymnasium.wrappers import EnvCompatibility
import numpy as np
import pandas as pd
import pdb
import torch

import ray
from ray.rllib.algorithms.ppo import PPOConfig
from ray import tune
import re
import matplotlib.pyplot as plt

from ipywidgets import Output
from IPython import display
import time

import warnings
warnings.filterwarnings('ignore')

In [3]: class ProportionalUserStrategy:
 """
 The user moves toward the target with velocity proportional to distance. Each fing
 """

 def __init__(self, speed_scaler, maxspeed, dist_thresh=None):
 self.speed = speed_scaler
 self.maxspeed = maxspeed
 self.dist_thresh = dist_thresh

 # TODO: add option to add noise

 def get_velocity(self, state_dict):
 """

 Returns a velocity using the control strategy.
 state_dict (dict): contains 'position' and 'target_pos'
 """
 dist = state_dict['target_pos'] - state_dict['position']
 velocity = np.clip(self.speed * dist, -self.maxspeed, self.maxspeed)

 # stop moving if within thresh of the target
 if self.dist_thresh:
 velocity[np.abs(dist) < self.dist_thresh] = 0

 return velocity

class ProportionalUserStrategyWithNoise(ProportionalUserStrategy):
 """
 Same as ProportionalUserStrategy, but with noise added to the velocity. The user m
 proportional to distance. Each finger is calculated independently.
 """

 def __init__(self, speed_scaler, maxspeed, dist_thresh=None, noise_std=0.1):
 super().__init__(speed_scaler, maxspeed, dist_thresh)
 self.noise_std = noise_std

 def get_velocity(self, state_dict):
 velocity = super().get_velocity(state_dict)
 velocity += np.random.normal(0, self.noise_std, velocity.shape)
 return velocity

In [4]: """
This module contains simulation environments for BMI tasks. Each environment handles g
observation/current state to the user, and managing trials
"""

class TargetGenerator:
 def __init__(self, num_dof=1, center_out=False, is_discrete=False, discrete_targs=
 """
 :param num_dof (int): Number of degrees of freedom (i.e. how many ta
 :param center_out (bool): If True, alternates between the center positio
 :param is_discrete (bool): If True, will choose targets from the discrete
 randomly choose targets from the continuous_ra
 :param discrete_targs (list): List of target positions to choose from in dis
 within 0-1. Use the function setup_discrete_ta
 :param continuous_range (list): List with the upper and lower limits for conti
 """
 self.num_dof = num_dof
 self.center_out = center_out
 self.is_discrete = is_discrete
 self.discrete_targs = discrete_targs
 self.cont_range = continuous_range if continuous_range else [0, 1]

 self.at_center = False
 self.target_pos = None

 def _choose_targ(self):
 if self.is_discrete:
 # choose discrete target
 return np.random.choice(self.discrete_targs)

 else:
 # choose a continuous target
 return np.random.uniform(self.cont_range[0], self.cont_range[1])

 def reset(self):
 self.at_center = False
 self.target_pos = None

 def generate_targets(self):
 if self.center_out:
 if not self.at_center:
 self.target_pos = np.array([0.5 for _ in range(self.num_dof)])
 self.at_center = True
 else:
 self.target_pos = np.array([self._choose_targ() for _ in range(self.nu
 self.at_center = False

 else:
 self.target_pos = np.array([self._choose_targ() for _ in range(self.num_do

 return self.target_pos

class TargetGeneratorDOFIndependent:
 """ Same as a target generator, but each DOF has its own target generator.
 This enables things like center-out for one DOF and random targets for another"""
 def __init__(self, target_gen_list):
 self.targ_gens = target_gen_list
 self.num_dof = len(target_gen_list)

 def reset(self):
 for gen in self.targ_gens:
 gen.reset()

 def generate_targets(self):
 return np.array([gen.generate_targets() for gen in self.targ_gens]).reshape((-

def setup_discrete_targets(num_targets, lowlim=0, uplim=1, remove_center=False):
 """ function to automatically calculate equally spaced targets """
 targets = list(np.linspace(lowlim, uplim, num_targets))
 if remove_center:
 targets = [target for target in targets if (target != 0.5)]
 return targets

class ContinuousBmiTaskEnv(gym.Env):
 """
 Environment for simulating a continuous movement target-acquisition task with vari
 user move using position or velocity commands, and requires a hold time on the tar
 Note: there is no delay/preparatory period - as soon as a trial is completed the n

 Also has an option for adding perturbations, i.e. jumps in the position, at a give
 hold period.

 Following the gym structure, has main functions: init, reset, and step.
 References for the gym api:

 https://www.gymlibrary.ml/content/environment_creation/
 https://www.gymlibrary.ml/content/api/
 """

 def __init__(self,
 num_dof=2,
 dt_ms=50,
 target_size=0.12,
 target_generator=None,
 hold_time_ms=500,
 trial_timeout_ms=10000,
 target_in_obs=False,
 use_velocity_action=True,
 perturb_prob=0.0,
 perturb_dict=None,
 strategy=None,):
 """
 :param num_dof (int): Number of fingers
 :param dt_ms (int): Milliseconds per timestep (the binsize)
 :param target_size (float): Target size as proportion of full position
 :param target_generator: A TargetGenerator object (which creates ta
 :param hold_time_ms (int): Milliseconds for the hold time
 :param trial_timeout_ms (int): Max number milliseconds before trial failu
 :param target_in_obs (bool): If target position should be shown in the
 :param use_velocity_action (bool): If True, the inputted action should be vel
 integrated to get the new positions. If Fa
 be positions.
 :param perturb_prob (float): Probability of perturbing the target posit
 :param perturb_dict (dict): Dictionary with the following keys:
 'magnitude': float, the magnitude of t
 'min_hold_time_ms': int, the point dur
 perturbation is ap

 """
 self.num_dof = num_dof
 self.dt_ms = dt_ms
 self.target_size = target_size

 self.targ_gen = target_generator
 self.hold_time_ms = hold_time_ms
 self.trial_timeout_ms = trial_timeout_ms
 self.target_in_obs = target_in_obs
 self.vel_action = use_velocity_action

 self.perturb_prob = perturb_prob
 self.attempted_perturb = False # if a perturbation was tried this trial (the
 if perturb_prob > 0:
 self.perturb_mag = perturb_dict["magnitude"]
 self.perturb_time_hold_ms = perturb_dict["min_hold_time_ms"]

 self.current_trial = 0 # how many trials total
 self.t_millis = 0 # how many total ms (all trials)
 self.trial_t_ms = 0 # how many ms in this trial
 self.in_targ_ms = 0 # how many ms inside the target
 self.target_pos = None # target position
 self.pos = None # dof position
 self.vel = None # dof velocity

 self.acc = None # dof acceleration
 self.timed_out = False # Whether the experiment is timed out
 self.strategy = strategy

 self.reset_full()

 # setup observation and action spaces (https://www.gymlibrary.ml/content/api/#
 if target_in_obs:
 self.observation_space = spaces.Dict({
 "target_pos": spaces.Box(low=0.0, high=1.0, shape=(num_dof,), dtype=np
 # "position": spaces.Box(low=0.0, high=1.0, shape=(num_dof,), dtype=np
 # "velocity": spaces.Box(low=-1.0, high=1.0, shape=(num_dof,), dtype=n
 "desired_pos": spaces.Box(low=0.0, high=1.0, shape=(num_dof,), dtype=n
 "desired_vel": spaces.Box(low=-1.0, high=1.0, shape=(num_dof,), dtype=
 })
 else:
 self.observation_space = spaces.Dict({
 # "position": spaces.Box(low=0.0, high=1.0, shape=(num_dof,), dtype=np
 # "velocity": spaces.Box(low=-1.0, high=1.0, shape=(num_dof,), dtype=n
 "desired_pos": spaces.Box(low=0.0, high=1.0, shape=(num_dof,), dtype=n
 "desired_vel": spaces.Box(low=-1.0, high=1.0, shape=(num_dof,), dtype=
 })

 if use_velocity_action:
 self.action_space = spaces.Box(low=-1.0, high=1.0, shape=(num_dof,), dtype
 else:
 self.action_space = spaces.Box(low=0, high=1.0, shape=(num_dof,), dtype=np

 def _get_obs(self):
 obs_dict = {}
 # obs_dict['position'] = self.pos
 # obs_dict['velocity']= self.vel
 if self.target_in_obs:
 obs_dict['target_pos'] = self.target_pos
 desired_vel = self.strategy.get_velocity(self.get_info())
 desired_pos = np.clip(self.pos + desired_vel, 0.0, 1.0)

 obs_dict['desired_vel'] = desired_vel
 obs_dict['desired_pos'] = desired_pos
 return obs_dict

 def get_info(self):
 return {
 'current_trial': self.current_trial,
 'total_t_ms': self.t_millis,
 'trial_t_ms': self.trial_t_ms,
 'target_pos': self.target_pos,
 'position': self.pos,
 'velocity': self.vel,
 'acceleration': self.acc,
 'timed_out': self.timed_out
 }

 def reset_full(self):
 self.current_trial = 0
 self.t_millis = 0
 self.trial_t_ms = 0

 self.in_targ_ms = 0
 self.targ_gen.reset()
 self.target_pos = self.targ_gen.generate_targets()
 self.pos = 0.5 * np.ones(self.num_dof)
 self.vel = np.zeros(self.num_dof)
 self.acc = np.zeros(self.num_dof)
 self.attempted_perturb = False
 return self._get_obs()

 def reset(self):
 self.current_trial += 1
 self.target_pos = self.targ_gen.generate_targets()
 self.trial_t_ms = 0
 self.in_targ_ms = 0
 self.attempted_perturb = False
 return self._get_obs()

 def _is_in_targ(self):
 return np.all(np.abs(self.pos - self.target_pos) < self.target_size)

 def _update_target_ms_count(self):
 in_targ = self._is_in_targ()
 if in_targ:
 self.in_targ_ms += self.dt_ms
 else:
 self.in_targ_ms = 0

 def _calc_reward(self, done):
 cur_pos, cur_vel, target_pos = self.pos, self.vel, self.target_pos
 if done and not self.timed_out:
 # trial success
 return 1

 # maximum number of time-steps
 T = self.trial_timeout_ms / self.dt_ms

 in_targ = self._is_in_targ()
 if in_targ:
 return 0
 else:
 return -1/T

 def _add_perturbation(self):
 if (not self.attempted_perturb) and (self.in_targ_ms >= self.perturb_time_hold
 if np.random.rand() < self.perturb_prob:
 self.pos += np.random.choice([-1, 1], size=self.num_dof) * self.pertur
 # Note: each dof is not fully independent - either all or none are per
 self.attempted_perturb = True

 def step(self, action):
 """
 :param action (ndarray): velocity or position for each finger, depending on se
 :return: Tuple[observation, reward, done, info]
 """
 # update position
 prev_pos = self.pos
 prev_vel = self.vel

Initializing environment

 self.pos = self.pos + action if self.vel_action else action
 if self.perturb_prob > 0:
 self._add_perturbation()
 self.pos = np.clip(self.pos, 0, 1)
 self.vel = self.pos - prev_pos
 self.acc = self.vel - prev_vel

 # check if trial is done
 self.t_millis += self.dt_ms
 self.trial_t_ms += self.dt_ms
 self._update_target_ms_count()
 self.timed_out = self.trial_t_ms >= self.trial_timeout_ms
 if (self.in_targ_ms >= self.hold_time_ms) or self.timed_out:
 done = True
 else:
 done = False

 reward = self._calc_reward(done)
 # print('reward: ', reward)
 observation = self._get_obs()
 info = self.get_info()
 return observation, reward, done, info

 def render(self, mode="human"):
 dof = self.num_dof
 res = 40 # resolution
 for finger in range(dof):
 print(f"Finger {finger}")
 target = np.floor(res * self.target_pos[finger])
 pos = np.floor(res * self.pos[finger])
 for i in range(res+1):
 if i == target:
 if target == pos:
 print("&", end='')
 else:
 print("x", end='')
 elif i == pos:
 print("o", end='')
 else:
 print("=", end='')
 print()

In [5]: num_dof = 1 # number of degrees of freedom
num_chans = 20 # number of channels
num_secs = 50 # number of seconds of data to simulate
binsize = 50 # binsize in ms
hold_time_ms = 1000 # hold time in ms
target_size = 0.08 # target size is used to calculate success
target_in_obs = False

train_val_test_split = [0.7, 0.1, 0.2]
batch_size = 64
conv_size = 20

Functions to run model and plot results

normalize_x = True # normalize neural data
normalize_y = True # normalize finger data
pred_type = 'pv' # 'pv' means we predict position and velocity

In [6]: def get_params(env_version):
 params = {
 "speed_std": 0.036,
 "no_of_targets": 3
 }

 if env_version == "2.3.0.0":
 params["speed_std"] = 0.04
 params["no_of_targets"] = 6
 elif env_version == "2.3.0.2":
 params["speed_std"] = 0.04
 params["no_of_targets"] = 2
 elif env_version == "2.3.0.3":
 params["speed_std"] = 0.04
 params["no_of_targets"] = 3
 elif env_version == "2.3.0.31":
 params["speed_std"] = 0.036
 params["no_of_targets"] = 3
 elif env_version in ["2.3.0.41", "2.3.0.42"]:
 params["speed_std"] = 0.036
 params["no_of_targets"] = 4

 return params

In [7]: def init_env(env_version):
 params = get_params(env_version)
 strategy = ProportionalUserStrategyWithNoise(speed_scaler=0.15, maxspeed=0.2,
 dist_thresh=0.02, noise_std=params["sp

 if True:
 targs = setup_discrete_targets(params["no_of_targets"], lowlim=0.2, uplim=0.8,
 targ_gen = TargetGenerator(num_dof=num_dof, center_out=False, is_discrete=True

 else:
 # option for random targets
 targ_gen = TargetGenerator(num_dof=num_dof, center_out=False, is_discrete=Fals

 # create an environment
 env = ContinuousBmiTaskEnv(num_dof=num_dof,
 dt_ms=binsize,
 target_size=target_size,
 target_generator=targ_gen,
 hold_time_ms=hold_time_ms,
 trial_timeout_ms=10e3,
 target_in_obs=target_in_obs,
 use_velocity_action=True,
 strategy = strategy)
 return env

In [8]: def run_model(model = None, num_episodes = 100, save_all_results = False, env=None):
 resultlist = []

 num_timesteps = 0
 # Collect all episode rewards here
 episode_rewards = []
 no_of_wins = 0

 env.reset_full()

 # Loop through episodes
 for ep in range(num_episodes):

 # Reset the environment at the start of each episode
 obs = env.reset()
 done = False
 episode_reward = 0.0

 # Loop through time steps per episode
 while True:
 # take random action, but you can also do something more intelligent
 # action = env.action_space.sample()
 # action = obs['desired_vel']
 if model is None:
 action = obs['desired_vel']
 else:
 action = model.compute_single_action(observation=obs, explore=False)

 # apply the action
 obs, reward, done, info = env.step(action)
 info['reward'] = reward
 info['done'] = done

 episode_reward += reward

 if save_all_results or ep < 20:
 # save only 1 episode unless save_all_results is True
 resultlist.append(pd.DataFrame([info]))

 # If the epsiode is up, then start another one
 num_timesteps += 1
 if done:
 if not info['timed_out']:
 # trial success
 no_of_wins += 1
 episode_rewards.append(episode_reward)
 break

 resultsdf = pd.concat(resultlist, ignore_index=True)

 # calculate mean_reward
 env_mean_random_reward = np.mean(episode_rewards)
 env_sd_reward = np.std(episode_rewards)
 # calculate number of wins
 total_reward = np.sum(episode_rewards)

 print()
 print("**************")
 print(f"Mean Reward={env_mean_random_reward:.4f}+/-{env_sd_reward:.4f}")
 # print(f" (out of success={env_spec.reward_threshold})")
 print(f"got {total_reward:.2f} reward over {num_episodes} episodes ({num_timesteps}
 print(f"Approx {total_reward/num_episodes:.4f} reward per episode")
 print(f"won {no_of_wins} over {num_episodes} episodes")
 print("**************")

 return resultsdf

In [9]: def plot_simulated_data(df, t_max=40e3, targetsize = target_size, posvel='pos'):
 t = np.stack(df.total_t_ms.to_numpy()) # shape (num_steps,)
 target_pos = np.stack(df.target_pos.to_numpy()) # shape (num_steps, num_dof)
 finger_pos = np.stack(df['position'].to_numpy())
 finger_vel = np.stack(df['velocity'].to_numpy())
 success_trials = df.query(
 'done == True and timed_out == False')[['total_t_ms', 'target_pos']]
 failure_trials = df.query(
 'done == True and timed_out == True')[['total_t_ms', 'target_pos']]
 num_dof = finger_pos.shape[1]

 fig = plt.figure(figsize=(10,3), dpi=120)

 # multi-dof plot
 for i in range(num_dof):
 if posvel =='pos':
 plt.plot(t, finger_pos[:, i])
 elif posvel =='vel':
 plt.plot(t, finger_vel[:, i])
 else:
 pass

 # target position
 if posvel =='pos':
 y = target_pos[:, i]
 elif posvel =='vel':
 y = 0.4*target_pos[:, i]-0.2
 else:
 pass
 plt.plot(t, target_pos[:, i], linewidth=0, marker='s',
 markersize=targetsize*262, alpha=0.05)

 for i in range(num_dof):
 for _, trial in success_trials.iterrows():
 plt.axvline(x=trial['total_t_ms'],
 linestyle='--',
 # ymin = trial['target_pos'][i] - targetsize,
 # ymax = trial['target_pos'][i] + targetsize,
 color='g')

 for _, trial in failure_trials.iterrows():
 plt.axvline(x=trial['total_t_ms'],
 linestyle='--',
 color='r')

 plt.xlabel("Timesteps")

Train model

 plt.ylabel("Position")
 plt.xlim((0, t_max))
 plt.ylim((0, 1))
 plt.show()

In [10]: def init_config(env_version):
 algo_config = {}
 algo_config['evaluation_num_workers'] = 0
 algo_config['evaluation_parallel_to_training'] = False
 algo_config['num_gpus'] = 1
 algo_config['num_rollout_workers'] = 8
 algo_config['num_envs_per_worker'] = 1

 # Change config settings
 # Create a PPOConfig object
 ppo_config = PPOConfig()\
 .environment(env=f"bmi-v-{env_version}")\
 .framework(framework="torch")\
 .debugging(seed=415, log_level="ERROR")\
 .evaluation(
 evaluation_interval=15,
 evaluation_duration=5,
 evaluation_num_workers=algo_config['evaluation_num_workers'],
 evaluation_parallel_to_training=algo_config['evaluation_parallel_to_traini
 evaluation_config = dict(
 explore=False,
 num_workers=4,
),)\
 .rollouts(
 num_rollout_workers=algo_config['num_rollout_workers'],
 num_envs_per_worker=algo_config['num_envs_per_worker'],)\
 .training(
 gamma=0.99,
 lr=1e-4)\
 .resources(
 num_gpus=algo_config['num_gpus']
)
 return ppo_config

In [11]: def train_model(model_config, end_it, start_it = 1, env_version = "0"):
 num_iterations = end_it
 ppo_algo = model_config.build()

 checkpoint_dir = f'{ROOT_DIR}saved_runs/ppo_{env_version}/'

 if start_it > 1:
 checkpoint =f"{checkpoint_dir}checkpoint_{(start_it-1):06d}"
 ppo_algo.restore(checkpoint)

 f_reward_path = f'{ROOT_DIR}reward_data/v{env_version}.txt'

 start_time = time.time()
 ppo_rewards = []

Main code

 with open(f_reward_path,"a+") as f_reward:
 for i in range(start_it, end_it):
 # Call its `train()` method
 result = ppo_algo.train()

 # Extract reward from results.
 ppo_rewards.append(result["episode_reward_mean"])

 # checkpoint and evaluate every 10 iterations
 if ((i % 10 == 0) or (i == num_iterations-1)):
 line_str = f"Iteration={i}, Mean Reward={result['episode_reward_mean']
 try:
 line_str += f"+/-{np.std(ppo_rewards):.4f}"
 except:
 pass
 # save checkpoint file
 checkpoint_file = ppo_algo.save(checkpoint_dir)
 line_str += f"\nCheckpoints saved at {checkpoint_file}\n"

 f_reward.write(line_str)
 print(line_str, end="")
 # evaluate the policy
 eval_result = ppo_algo.evaluate()

 # To stop the Algorithm (and Env) and release its blocked resources, use:
 ppo_algo.stop()

 # convert num_iterations to num_episodes
 num_episodes = len(result["hist_stats"]["episode_lengths"]) * num_iterations
 # convert num_iterations to num_timesteps
 num_timesteps = sum(result["hist_stats"]["episode_lengths"] * num_iterations)
 # calculate number of wins
 num_wins = np.sum(result["hist_stats"]["episode_reward"])

 # train time
 secs = time.time() - start_time
 print(f"PPO won {num_wins:.2f} times over {num_episodes} episodes ({num_timesteps}
 print(f"Approx {num_wins/num_episodes:.4f} wins per episode")
 print(f"Training took {secs:.2f} seconds, {secs/60.0:.2f} minutes")

In [12]: def load_model(config, env_version, checkpoint_version):
 checkpoint_dir = f'{ROOT_DIR}saved_runs/ppo_{env_version}/'

 checkpoint =f"{checkpoint_dir}checkpoint_{(checkpoint_version):06d}"
 print(f"\n{checkpoint}")

 algo = config.build()
 algo.restore(checkpoint)

 return algo

Mean Reward=0.6230+/-0.5083
got 62.30 reward over 100 episodes (10714 timesteps)
Approx 0.6230 reward per episode
won 80 over 100 episodes

Evaluate model

saved_runs/ppo_2.3.0.3/checkpoint_001500

In [13]: env_version = "2.3.0.3"

To start fresh, restart Ray in case it is already running
if ray.is_initialized():
 ray.shutdown()

env = init_env(env_version)

In [14]: # baseline model
resultsdf_base = run_model(num_episodes = 100, env=env)
plot_simulated_data(resultsdf_base, t_max=60e3)

In [15]: # Registering in Ray
tune.register_env(f"bmi-v-{env_version}", lambda config: EnvCompatibility(env))

ppo_config = init_config(env_version)

no_of_iterations = 1500
train_model(ppo_config, end_it=1+no_of_iterations, env_version=env_version)

In [16]: algo = load_model(ppo_config, env_version, checkpoint_version=no_of_iterations)

2023-04-27 16:18:18,370 INFO worker.py:1553 -- Started a local Ray instance.
2023-04-27 16:18:27,836 INFO trainable.py:172 -- Trainable.setup took 11.942 seconds.
If your trainable is slow to initialize, consider setting reuse_actors=True to reduce
actor creation overheads.
2023-04-27 16:18:27,846 WARNING util.py:67 -- Install gputil for GPU system monitorin
g.
2023-04-27 16:18:27,981 INFO trainable.py:791 -- Restored on 127.0.0.1 from checkpoin
t: saved_runs\ppo_2.3.0.3\checkpoint_001500
2023-04-27 16:18:27,981 INFO trainable.py:800 -- Current state after restoring: {'_it
eration': 1500, '_timesteps_total': None, '_time_total': 16850.89587712288, '_episode
s_total': 55268}

Mean Reward=0.3785+/-0.7732
got 37.85 reward over 100 episodes (9798 timesteps)
Approx 0.3785 reward per episode
won 66 over 100 episodes

Plotting rewards v/s iterations

In [17]: resultsdf_model = run_model(model=algo, num_episodes = 100, env=env)
plot_simulated_data(resultsdf_model, t_max=60e3)

In [20]: def plot_rewards(filename, title, label=None, color_label='b', horiz_line = True):
 text_file = open(f'{ROOT_DIR}reward_data/{filename}', "r")
 text = text_file.read()
 text_file.close()

 text_list = text.rstrip().split('\n')
 it_list = []
 mu_list = []
 std_list = []

 for line in text_list[::2]:
 it = int(re.search(r'Iteration=(\d*),', line).group(1))
 reward_mu = float(re.search(r'Reward=(.*)\+\/\-', line).group(1))
 reward_std = float(re.search(r'\+\/\-(.*)', line).group(1))
 if len(it_list) and it <= it_list[-1]:
 it_list, mu_list, std_list = [], [], []
 it_list.append(it)
 mu_list.append(reward_mu)

 std_list.append(reward_std)

 it_list = np.array(it_list)
 mu = np.array(mu_list)
 std = np.array(std_list)

 plt.plot(it_list, mu, color=color_label, label=label)
 if horiz_line:
 plt.axhline(y = 1, color = 'g', linestyle = '--')
 plt.axhline(y = 0, color = 'orange', linestyle = '--')

 plt.xlabel('Iterations')
 plt.ylabel('Reward')
 plt.title(title)

In [21]: plot_rewards(filename='v3.2.txt', title='', label="2 targets", color_label='#ffc300')
plot_rewards(filename='v3.3.txt', title='', label="3 targets", color_label='#ff5733')
plot_rewards(filename='v3.4.txt', title='', label="4 targets", color_label='#c70039')
plot_rewards(filename='v3.5.txt', title='', label="5 targets", color_label='#900c3f')
plot_rewards(filename='v3.6.txt', title='', label="6 targets", color_label='#581845')

plt.legend(loc='lower right')
plt.show()

