Parkinson's Disease Progression Prediction

Prithvijit Dasgupta (prithvid) Nowrin Mohamed (nowrin) Sachin Salim (sachinks)
University of Michigan, Ann Arbor

Abstract:

Parkinson's disease is a chronic and progressive neurodegenerative disorder that affects the brain's dopamine-generating
neurons, causing difficulties in everyday tasks such as speaking, writing, and walking. The severity of these symptoms
worsens over time, posing a challenge for patients. This disease is typically diagnosed through clinical observations of
motor symptoms, which can be subjective and prone to errors. Early non-motor symptoms may also be overlooked,
making early diagnosis challenging. To address these issues, researchers have turned to machine learning to improve the
accuracy and objectivity of PD diagnosis. In this study, we propose an approach for predicting Parkinson's disease
progression with the dataset from Kaggle using several regression models like Linear Regression, Decision Tree
Regression, Random Forest Regression and Extra Trees Regression. Comparison of these models are also done using
SMAPE as the comparison parameter.

Motivation:

The motivation for the proposed project is to develop a model for predicting the progression of Parkinson's Disease using
protein and peptide data measurements. Parkinson's Disease is a chronic and progressive neurological disorder that
affects a significant portion of the population, causing symptoms such as tremors, stiffness, and impaired balance and
coordination (Postuma et al., 2019). This project is chosen because early and accurate prediction of disease progression
can help healthcare providers plan and adjust treatment regimens accordingly, which can significantly improve patients'
quality of life.

The project aims to address the specific question of whether protein and peptide data can be used to predict the
progression of Parkinson's Disease. Heemels et al., has conducted a study with proteins and peptide data measurement
and have identified specific molecules that cause the disease so that researchers can gain insights into the underlying
biological processes involved in Parkinson's Disease progression, which can help to identify potential new targets for
drug development and improve our understanding of the disease.

This project is particularly important because current methods for assessing Parkinson's Disease progression rely on
clinical observation, which may not be sensitive enough to detect subtle changes in disease progression or provide
insights into the underlying biological processes involved (Postuma et al., 2019). Using protein and peptide data to
predict disease progression could provide a more objective and comprehensive measure of disease progression and help
to identify novel therapeutic targets. The study "Accuracy Improvement for Predicting Parkinson’s Disease Progression"
in Scientific Reports developed a machine learning model that achieved an accuracy of 76% in predicting PD
progression using data from the Parkinson’s Progression Markers Initiative (Maitra et al., 2019).

Overall, this project has the potential to significantly advance our understanding of Parkinson's Disease and improve
patient care. By developing a model for predicting disease progression using protein and peptide data, we can identify
new biomarkers for monitoring disease progression, improve our understanding of the biological mechanisms involved
in Parkinson's Disease progression, and develop new therapeutic strategies for treating the disease (Athauda & Foltynie,
2015).

Data Sources:

The AMP Parkinson's Disease Progression Prediction Dataset, provided by the Accelerating Medicines Partnership for
Parkinson's Disease, is accessible on Kaggle and contains clinical and molecular data from approximately 1000
participants. The dataset is presented in CSV format and has been downloaded and accessed through Pandas.

The primary dataset, "train_clinical data.csv," includes demographic data, such as visit_id, visit_month, and patient id,
as well as disease severity scores and motor and non-motor symptom scores represented by Unified Parkinson's Disease
Rating Scale (UPDRS) scores, such as updrs_1, updrs_2, updrs 3, updrs 4, and upd23b_clinical state on_medication
(the information of if a patient is prescribed medication or not on a particular visit). The dataset comprises 2615 records,
with a file size of 72 KB, and data types include string, integer, and boolean. The suuplemetal clinical data.csv contains
2223 patients information. This represents clinical records without any associated CSF samples. This data is intended to
provide additional context about the typical progression of Parkinsons and shares the same columns as the clinical data.

The molecular data is split into protein and peptide data, available in "train_proteins.csv" and "train_peptides.csv,"
respectively. The protein dataset includes demographic data such as visit_id, visit_month, and patient_id, as well as
molecular data like NPX and UniProt. NPX represents the normalized protein expression, indicating the protein's
frequency of occurrence in the sample. However, this does not necessarily have a one-to-one relationship with
component peptides as some proteins contain repeated copies of a given peptide. UnitProt refers to the UniProt ID code
of the associated protein. The dataset consists of 233K records and has a file size of 7.3 MB, with data types including
string, integer, and float.

The peptide dataset contains demographic data like visit id, visit month, and patient id, similar to the protein and
clinical data, as well as peptide and peptide abundance. Peptide represents the sequence of amino acids included in the
peptide. The dataset consists of 982K records and has a file size of 48.9 MB, with data types including string, integer,
and float. It is worth noting that the test set may contain peptides not found in the train set, and peptide abundance
represents the frequency of the amino acid in the sample.

The links for datasets are as below,

Clinical data - Link

Proteins data - Link

Peptides data - Link
Supplemental clinical data - Link

bl

Exploratory Data Analysis and Data Manipulation:

EDA is an important first step in data analysis, as it helps to identify potential issues or inconsistencies in the data, and
also helps to generate insights that can guide subsequent analyses. We performed EDA on the three different datasets we
had collected which is explained in detail below,

EDA and Manipulation on Clinical data:

The initial step in analyzing a dataset is to determine its dimensions. Upon reading the data, it was determined that
the dataset consists of 8 columns and 2615 rows. The subsequent step involves assessing the central tendency,
dispersion, and shape of the dataset's distribution. In this regard, missing values were identified in columns updrs 1,
updrs_2, updrs_4, and upd23b_clinical state on medication, with values of 1, 2, 1038, and 1327, respectively. The
average, minimum, and maximum values of each column were also computed, revealing that not all tests are
conducted during every patient visit, and medication usage may differ from one visit to another. Furthermore, the
data comprises 248 unique patient_id values and 17 unique visit_month values.

Histograms are a graphical representation of the distribution of a dataset, displaying the frequency of observations
that fall within specific value ranges or bins. A histogram plot was constructed for the visit month and updrs[1-4]
columns, as depicted in Figures 1 and 2.

https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction/data?select=train_clinical_data.csv
https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction/data?select=train_proteins.csv
https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction/data?select=train_peptides.csv
https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction/data?select=supplemental_clinical_data.csv

updrs 3
Mean: 20.21

Median: 9.00
Std: 20.76

Min: 0.00
Max: 58.00

] 0) [

updrs 4
Mean: 1.86
Median; 000

std: 3.02

Min: 0,00
Max; 20.00

updrs.

z
FEE

Fig.1. & Fig.2 Histogram plot on visit_month, updrs [1-4]

From the plots, it can be seen that the frequency of people visiting over the course of the disease has gradually
reduced and this could be because they might have passed away or might have stopped visiting because the
medication might not be working on that or for any personal reasons. There are lots of 0 values in updrs_2, updrs_3
and updrs_4 but updrs_1 distribution is more balanced. After performing exploratory data analysis (EDA), it was
discovered that medication was prescribed to patients 775 times, while in 513 instances, it was not prescribed. It
should be noted that patients may not receive medication during every visit, even if they were prescribed it
previously. This is because the data collection methodology is designed in such a way that if medication was given
during one visit, the next visit is preferred to be without medication.

To further understand the correlation between the UPDRS scores, a heatmap was created and analyzed (as shown in
Figure 3). The heatmap revealed that all the values are positively correlated, indicating that an increase in
Non-Motor Experiences of Daily Living (NEDL) is accompanied by an increase in Motor Section symptoms. It was
also observed that UPDRS 1 and UPDRS 2 are highly correlated.

1.0

Correlations

-0.8

-0.6

-0.4

0.43 0.38

updrs_4

upd}s_l upd}s_Z updrs_3 updrs_4

Fig.3. Heat map showing the correlation between updrs values

To examine the progression of UPDRS scores for a specific patient, a line plot was generated, which is displayed in
Figure 4. This plot shows how the scores change over several months for the selected patient. It is worth noting that
patients who are prescribed medication may exhibit improvement, but to verify this, another plot was created (Figure 5).
This plot aimed to investigate whether medication has a substantial impact on a patient's condition. Surprisingly, it was
observed that the disease continued to progress in both cases, even with heavier or lighter medication regimes.

25

.......... \ . — updrs 1

-~ updrs_1 25 d —2

updrs_2 e updrs_

20 S e updrs_3 o E updrs_3
H "~ < 20 ===+ updrs_4

=== updrs_4

15 e f
S 15

10 10

visit_month visit_month
Fig. 4 Disease progression of Patient 23391 Fig.5. Progression while on light medication

Data Transformation and Filling NaN:

Upon analyzing the dataset, it was discovered that there are no null values in the CSF observations with the peptide and
protein data. However, null values were present in the clinical and supplemental clinical data. To address this issue, the
median of the entire UPDRS _[1-4] column was initially used to fill the NaN values as a baseline analysis. Additionally,
for the 'upd23b_clinical state on medication' column, NaN values were filled with the string 'Missing'.

However, using the median of the entire column to fill in missing values may not always provide accurate results since
the data belongs to different patients. Therefore, a more precise method was used to improve the accuracy. Specifically,
the missing values of UPDRS scores for each patient were replaced with the mean of their respective UPDRS scores.
This approach helped fill around 70% of the missing values. For the remaining missing values, the data was grouped by
visit month and filled with the mean data for each month. Finally, any remaining missing values were filled with the
mean data for each UPDRS score across the entire dataset. Also, there are no duplicate entries found in the data. The
code for handling missing values is below,

def fill_na(data):
data_1 = data.groupby('patient_id").transform(lambda x: x.fillna(x.mean()))

data 2 =data_1.groupby('visit month").transform(lambda x: x.fillna(x.mean()))
data 3 =data 2.fillna(data 2.mean())
return data 3

EDA and Manipulation on Proteins and Peptides data:

The protein data comprises protein expression frequencies derived from the peptide-level data and is associated with
UniProt ID codes. The number of patients in the protein data matches that in the clinical data, and there are 227 distinct
proteins. On average, each patient has 938.5 proteins, and each patient-visit has 209.1 proteins. The UniProt ID codes are
unique identifiers assigned to protein sequence entries in the comprehensive UniProt database, which contains functional
and sequence information for proteins. These IDs typically start with a prefix that identifies the type of entry and are
composed of letters and numbers. A histogram plot of the NPX values resulted in a heavily skewed distribution. Thus, a
log scale was used which provided a more or less normal distribution as shown in Figure 6.

NPX
Mean: 2712076.94
Median: 113556.00
Std: 22241547.32
Min: 84.61
Max: 613851000.00

E]

1

z ®

b

Fig.6. Histogram of NPX values on log scale

The UniProt database was examined, and it was determined that UniProt 220 appeared the most frequently, occurring 36
times. The distribution of the data is approximately normal, with a mean of 209.11, a minimum value of 37, and a
maximum value of 224. The 25th, 50th, and 75th percentiles were 206.000000, 212.000000, and 216.000000,
respectively. Overall, the data appears to be normally distributed.

To detect outliers and examine the distribution of protein expression levels, the NPX data for several proteins were
plotted. Figure 7 illustrates that the NPX values are not significantly distant from the 75th percentile and could

potentially enhance the model's predictive ability. Therefore, removing these values may not be necessary.

000391 000533 000584 014498 014773 014791 015240 015394
le4 leb led led led le3 les le>
. + 59 + + t 1 +
1 175 t
=0 [} 61 64 7 :
. + o 12
150 ad :
5 s 4 41 104
159 125
a4 1
| 34] 08 4
% x 100 x st % % %’ %
E H E] E4 H E E
10 5
075 4 34 2] 44 L) 06
24
050 049
05 4 2 4
L] 14 14 2 14
025 024
¢ o] 4 ' S ¥
0.0~ T 0.00 T T T T 04 T 0.0 T
0 o o] 0 o o]

Protein Expression

Protein Expression

Protein Expression

Protein Expression

Protein Expression

Protein Expression

Protein Expression

Protein Expression

Fig.7. Box plot of NPX distribution of certain Protein Expression

Similar to the NPX plot, the plot for Peptide Abundance was heavily skewed and was plotted on log scale as shown in
Figure 8. The data seems to be more or less normally distributed with less outliers.

PeptideAbundance
Mean: 642890.25
Median: 74308.30
Std: 3377989.09
Min: 11.00
Max: 178752000.00

T T 3
25 50 75 0o 25 B8 175

Fig.8. Histogram of Peptide Abundance values on log scale

Data Transformation and Filling NaN:

The initial conclusion that protein and peptide data had no null values was incorrect. After pivoting the data, 7.88% and
8.87% of missing values were found, respectively. To fill in the missing data, a patient- and visit-month grouping
approach was used, followed by filling with mean data for each protein or peptide. Only 1068 visits had common data
across protein, peptide, and clinical data, indicating that some visits were not significant. And there are no duplicates
present in the data. The data transformation and finding common values code is as below,

def pivot_proteins():
return proteins_data.pivot(
index=['visit_id', 'patient id', 'visit month'], columns='UniProt', values="NPX")

def pivot_peptides():
return peptides_data.pivot(

index=["visit_id', 'patient_id', 'visit month'], columns='Peptide', values='Peptide Abundance')

common_indices = np.intersectld(peptide features.index.values,
clinical features.index.values)

print(f" {len(common_indices)} visits are common between input\

and output features")

The distribution of top 5 NPX and Peptide Abundance data across visit months was analyzed. The protein and
peptide data were merged with clinical data based on visit_id and the coefficient of variation was calculated for the
top 5 proteins and peptide abundance values. The data was plotted separately for patients not on medication, those
on medication, and missing data in Figure 9 and 8. The analysis suggests that medication may not significantly
affect NPX values or the progression of the disease. The below code is written only for proteins and similary done
for peptides as well. The code for this is as below,

train_proteins_df agg = proteins_data[['patient id', 'UniProt', NPX']]

train_proteins_df agg = train_proteins_df agg.groupby(['patient id', 'UniProt'])['NPX']\
.aggregate(['mean’, 'std'])

train_proteins_df agg['CV_NPX[%]'] = train_proteins df agg['std'] / train proteins df agg['mean'] *

NPX cv_mean = train_proteins_df agg.groupby('UniProt")['CV_NPX[%]'].mean().reset index()
NPX cv_mean = NPX cv_mean.sort values(by='CV_NPX[%]', ascending=False).reset_index(drop=True)

protein_cv_topS5 = NPX cv_mean[:5]['UniProt']
train_proteins_df agg top5 = train_proteins df agg.query('UniProt in @protein_cv_top5').reset index()

train_proteins_df agg top5['order'] =
for i, protein in enumerate(protein_cv_top5):
index = train_proteins_df agg topS.query(f'UniProt=="{protein}"").index
train_proteins df agg topS.loc[index, 'order'] =i
train_proteins_df agg topS.sort values(by='order', inplace=True)

P16152 NPX

POB160 NPX

NPX - Visit Month (Highest top5 CV) -

Peptide Abundance - Visit Month (Highest top5 CV)
Medication: On Medication: Off Medication: Missing

3M Medication: On Medication: Off Medication: Missing

w Sl '

s ik

20 40 60 80 0 50 100 5 00

SC(UniMod_4)SPELQQK Abundance

20 40 60 80 0 50 100

Visit Month Visit Manth Visit Month
Visit Month Visit Month Visit Month

=

fo—
——
LPPTSAHGNVAEGETKPDPDVTER Abundance
o
E
p=———

Visit Month Visit Month Visit Month

20 40 60 8D 0 50 100

Fig.9. Distribution of NPX Fig.10. Distribution of Peptide abundance

EDA and Manipulation on Supplemental Clinical data:

The Supplemental data includes 771 unique patient id values and 8 unique visit month values. Concatenation of
clinical data with supplemental clinical data was performed as they have identical shape (columns). Comparative
study results are displayed in Figures 11 and 12.

Count of visit_month Count of upd23b_clinical_state_on_medication

2500 train_or_supplemental

W train_data
supplemental_data

train_or_supplemental
B train_data
supplemental_data

40

20

Missing on off

0
HLI I II'I I 1 « .
0 20 40 60 80 100

visit_month

upd23b_clinical_state_on_medication

Fig.11. Visit month comparison Fig. 12. Medication comparison

There are several differences between supplemental and clinical data. One major difference is that supplemental data
completely lacks information on specific proteins and peptides, while clinical data typically includes this information.
Additionally, the sets of patients included in each dataset are mutually exclusive.

Both supplemental and clinical data underwent various types of data manipulation and analysis, such as filling in missing
values (NaN), merging and concatenating data frames, and pivoting tables. These techniques are used to conduct
descriptive and inferential analyses of the data and to gain insights from the information contained in the datasets.

Challenges Faced in Data Manipulation:

In order to determine the most effective method of filling in missing values, we conducted a thorough analysis. It became
clear early on that filling each protein's missing values with its mean or median across the entire dataset may not be the
optimal approach. This is due to the significant correlation between the missing protein values and the specific patient

being measured, as well as the month in which the measurement was taken. Therefore, we examined the variation in
average protein values across patients and months, ultimately determining that the patient being measured was the best
predictor for the missing protein values, followed by the month of measurement. Based on this analysis, we developed a
strategy for filling in the missing protein values. However, when it came to the missing medication values, it was
difficult to determine an appropriate replacement strategy. Since these values were binary and there was limited
information available about why they were missing, we ultimately decided to simply label them as "Missing".

Training, Evaluation and Prediction

This study utilized the PyCaret library to train and compare multiple models, tune hyperparameters, perform
cross-validation, and optimize the model for better accuracy. Since there were no sources available on how to
combine the four different UPDRS scores into a single label, a separate model was created for each score.

The pre-processed dataset was split into three parts - a training set, a validation set, and a holdout set. The training
set was used to train the machine learning model, while the validation set was used to evaluate the model's
performance and tune its hyperparameters. The holdout set was used to test the model's performance after training it
on both the training and validation datasets. Some patients were randomly selected and their information was
held-out during the model selection/optimization process. The remaining dataset was passed to PyCaret for further
tasks.

The PyCaret setup() function was used to split the data into training and validation sets, with the default train-test
split of 70-30 being used in this project.

pycaret.regression.setup(data=final

The PyCaret framework was utilized to evaluate different models by utilizing the compare_model() function. This
function enables users to compare various machine learning models supported by PyCaret. Most of the models are
implemented in scikit-learn, but there are also a few additional models such as LightGBM, XGBoost, and Elastic
Net. During the model comparison, the R2 score was used as a metric for evaluating model performance. A higher
R2 score indicates a better fit of the model with the training data. Hence, the model with the highest R2 score was
preferred in the comparison process.

pycaret.regression.compare_models(sort="R2")

This gives the best possible model with the highest R2 score as devised in Eq. 1. Except for UPDRS 4, the Extra
Trees Regressor model was observed to have the highest R2 scores (for UPDRS 4 alone, Elastic Net Regression
model had the higher value).

2 -~ -2 =2
R=X(y,—y)/EZ(y —¥) Eq. 1

where, Y, represents the prediction or a point on the regression line, ; represents the mean of all the values and Y,

represents the actual values or the points.

PyCaret also provides an easy to use tune model() function which enables developers to quickly tune their models.
The tune model() function was used to optimize the model selected in the previous step to have the best
hyperparameters. The hyperparameters of the model are the parameters that are not learned from the data but are set
before training, such as the regularization parameter in a logistic regression model. Using this function,
cross-validation to search for the best hyperparameters within the default search space is performed.

pycaret.regression.tune_model(best model, choose better= , optimize='SMAPE")

In the context of feature engineering, a time offset approach was adopted to predict disease progression. This
approach follows a Markov chain pattern, whereby the current UPDRS score is calculated based on the previous
month's available UPDRS score. To select the most relevant features for training, a correlation analysis and pairplot
visualization were conducted. Based on the results, only UPDRS 1 and UPDRS 2 were deemed suitable for
training, as they exhibit a steady progression and are not scaled. On the other hand, the protein data were scaled
using a standard scalar since the distribution was wide.Moreover, feature selection was performed by selecting only
the protein features and omitting the peptide features. This decision was made because each protein is composed of
peptides, and the protein data is already encoded.

The optimization was performed on the SMAPE as devised in Eq. 2 metric as this was the metric that the Kaggle
competition is being evaluated on. As a final step, the ensemble of the model was done using a Bagging Regressor
with 20 estimators using the ensemble model() function. For most of the cases, the model performed better with the
ensemble model.

pycaret.regression.ensemble models(tuned model, method='"Boosting', choose better= True, n_estimators=20)

SMAPE = 1/n* Y | forecast value — actual value |/ (|actual value| + |forecastvalue|) /2 Eq.2

finalize model() was used to train the model on the entire dataset and finally, predict model() was used on the
holdout patient data to predict their UPDRS score. The model’s workflow is as described in Figure 13.

[s;utp(q _— [qow\oare__modejs()}{ tune__modelQ) j
_. S
{}ino\hze,_mode,fo pre_d?c‘t,_modej()

Predict

on ho[o‘out
set

Fig. 13.. The model’s workflow

Discussion

A qualitative discussion is necessary on our predicted progressions for the holdout patients. Figure 14 and 15 are
two of the observed predictions, where the model does somewhat well and the other where the model is not able to

predict very well.
Predictions for Patient 23391

UPDRS 1 UPDRS 2
15
45 | —— prediction —— prediction
updrs updrs_2
10 10
5
5 \A
o /
0 20 40 60 80 0 20 40 60 80
month month
UPDRS 3 UPDRS 4
A 1.00 -
——fprediction —— prediction
w0 / lpars 3 075 wpdrs_4
JY \ 050
2\
/ \ \ 025
0 L 0,00
0 20 40 60 80 0 20 40 60 80
month month

Fig. 14. The predicted time series for Patient 23391

10

For patient 23391, UPDRS 1 and UPDRS3 showed a tendency to overestimate the predicted value, however it can
be argued that the predicted value trended in a generally correct direction. UPDRS 4 was the column in the dataset
that had the most empty values, which were filled in with zeroes. The model seemed to learn that predicting zero
was the best way to handle predicting this feature. Owing to the sparsity of data, the model could not be generalized
for UPDRS 4. UPDRS 2 was the worst performing label for this patient where the values were overestimated and
the trend did not finally match.

Predictions for Patient 27468

UPDRS 1 UPDRS 2
20
15
15
= prediction 10 = prediction
10 updrs_1 updrs_2
5 5
o
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 0
month month
UPDRS 3 UPDRS 4

—— prediction
updrs_4

“— prediction = 4
updrs_3

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 0
month month

Figure 15. The predicted time series for Patient 27468

The observations for patient 27468 clearly shows that the prediction model clearly cannot be generalized for all
patients. The predicted values for the patient did not even trend in the correct direction (a worsening disease should
have increasing scores). Only UPDRS 4 had some match in the initial part of the time series (but that is more due to
the model predicting 0 for all UPDRS 4 data).

SMAPE might not be the best metric to be selecting the model performance on. We could have kept optimizing a
single metric (such as R?) throughout the entire model creation and test workflow and that might have given us
better results for the dataset. Also, since the UPDRS score itself is more akin to a rating that the patient/caregiver
provides rather than a measurement made using a tool, it is unclear on how to generalize the label metric across
patients. Perhaps one way could be to convert the label itself to its scaled Z-score values in order to predict the label
Z-scores.

Considering this model ethically, it should definitely not be something that could be used in production as it clearly
does not do a good job of predicting Parkinson's diseases. Deploying such a model would be a hazard and might
negatively impact most of the patients (even though it achieves good SMAPE scores during the cross-validated
training and evaluation). It is important to do a qualitative check on the predicted values before deploying medical
models to the real world.

Future Work

There are several potential avenues for future work in predicting Parkinson's disease. Firstly, to address biases in the
dataset, it is recommended to control for confounding variables and use appropriate statistical methods like stratified
sampling or propensity score matching. Secondly, an embedding matrix can be used to fill in the NaN values in
clinical, protein, and peptide data such as updrs values and medication values. This will provide a numeric
representation of the categorical data, and the resulting dataset can be utilized for further analysis. Finally, past data
can be leveraged to make future predictions about the progression of the disease. Although UPDRS scores and
protein/peptide samples may not be available for subsequent visits, the past data can still be used to forecast the
progression of Parkinson's disease.

11

Statement of Work

The team collectively and carefully brainstormed ideas on the problem statement, analysis methods, data
manipulation, model selection, and evaluation parameters.

Nowrin Mohamed conducted Exploratory Data Analysis on the Clinical, Proteins, Peptide, and Supplementary
clinical data. This included identifying null values, filling NaN values, finding the progression of UPDRS scores
across months, and analyzing the correlation between UPDRS scores. Nowrin also worked on the report with input
from the rest of the team.

Sachin Salim analyzed the Proteins data and helped develop a baseline model without PyCaret to gain initial insights
into the data. Sachin also performed Inferential Analysis and high-level data manipulation, including transforming
the protein and peptide data, merging and concatenating different tables, and filling NaN values more intelligently.

Prithvijit Dasgupta handled the training, evaluation, and prediction of the model. This included splitting the dataset
into training and evaluation sets, tuning hyperparameters, extracting and selecting features, evaluating and predicting
the model. Prithvijit also worked on understanding the clinical data of short-term and long-term patients and how
medication affects the progression of UPDRS scores. The training part of the report was also carefully edited by
him.

All team members contributed equally to the visualization part, creating graphs as needed throughout the analysis
process.

Our collaboration was very fruitful because we all shared knowledge and collectively brainstormed ideas which was
an enriching experience. We assessed our strengths and rightly split the work after mutual agreement and we believe
because of the comfort we had, we were very productive throughout our project. The only thing we had struggled
with was to match our schedules so mostly we met on weekends and assigned our works for the week and reported
them. This could have improved in such a way to meet more than twice a week at least virtually so to understand
and update progress. But otherwise, this was a dream team.

References:

[1] Athauda, Dilan, and Thomas Foltynie. “The ongoing pursuit of neuroprotective therapies in Parkinson disease.”
Nature reviews. Neurology vol. 11,1 (2015): 25-40. doi:10.1038/nrneurol.2014.226

[2] Heemels, Marie-Thérése. “Neurodegenerative diseases.” Nature vol. 539,7628 (2016): 179. doi:10.1038/539179a
[3] Postuma, Ronald B et al. “MDS clinical diagnostic criteria for Parkinson's disease.” Movement disorders :
official journal of the Movement Disorder Society vol. 30,12 (2015): 1591-601. doi:10.1002/mds.26424

[4] Cooper JF, Van Raamsdonk JM. Modeling Parkinson's Disease in C. elegans. J Parkinsons Dis. 2018;8(1):17-32.
doi: 10.3233/JPD-171258. Erratum in: J Parkinsons Dis. 2020;10(2):745. PMID: 29480229; PMCID: PMC5836411.
[5] Kaggle

[6] AMP Parkinson's Disease Progression Prediction

[7] PyCaret

https://www.kaggle.com/
https://www.kaggle.com/competitions/amp-parkinsons-disease-progression-prediction/overview
https://pycaret.org/

