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Abstract

Among brain tumors, gliomas are the most common and
aggressive, having extreme variations in shape, size and
appearance. Automatic and reliable segmentation meth-
ods are important because the large amount of data pro-
duced by MRI prevents manual segmentation in a reason-
able time. In this paper we aim to develop a deep learning
model using a 3D U-Net with adaptations in the preprocess-
ing, training and testing strategies. In addition to this, we
created an ensemble of multiple models trained with differ-
ent hyper-parameters that are used to reduce random errors
from each model and yield improved performance. Given
the limited computational power, three different 3D U-Net
architectures are implemented where each model performs
better than the other in its own aspects. Furthermore, the
ensemble provides better results.

1. Introduction
Gliomas have various heterogeneous histological sub-

regions, i.e., peritumoral edema, necrotic core, enhancing,
and non-enhancing tumor core. This intrinsic heterogeneity
of gliomas is also portrayed in their radiographic pheno-
types, as their sub-regions are depicted by different inten-
sity profiles reflecting differences in tumor biology[7, 15].
Because of the heterogenity, segmentation is challenging[1]
and thus, developing a reliable machine learning model that
can accurately predict the genetics of this tumor could sig-
nificantly speed up the diagnosis process and avoid the re-
quirement of multiple invasive surgeries and therapies.

U-Net is a widely used network structure that consists of
a contracting and a symmetric expanding path that enables
segmentation for the entire input image[12]. In practice, it is
very challenging to achieve a single “optimized” model and
thus, an ensemble of multiple models can generally improve
the segmentation accuracy[14]. In this paper, we propose
three different 3D U-Nets with different hyper-parameters
and also an ensemble to 3D U-Nets. For each 3D U-Net, the
smaller 3D patches will be extracted to minimize memory

overhead and also a data reshaping is done where all four
modalities of the MRI volume are concatenated together.
Furthermore, during testing, a sliding window approach is
used to predict class labels with overlap between patches as
a testing augmentation method to improve accuracy. Even
though many new methods show superior performance, a
recent paper claimed that vanilla U-Net can yield robust and
superior performance[8].

Our Contributions. Feng et al.[7] explored the idea of
ensemble learning by incorporating predictions from multi-
ple models. Though we followed most of their work in this
project, there were certain areas where we improvised based
on our available resources, time and knowledge. Firstly,
the patch extraction method used [7] using a probabilis-
tic approach with heuristic weights while extracting ran-
dom patches from the scan, whereas we first cropped the
scans around the neighborhood of the tumor and then ex-
tracted uniformly random patches of a fixed size. Secondly,
the model was trained on the “dice-loss” averaged over
the classes with a 1:3 ratio of weights for the background
and foreground classes, which penalizes the model from
overly generalizing the segmentation in case of a class im-
balance. We decided the weights empirically based on class
frequency and relevance. Moreover, our model achieved a
good dice score in 30 epochs of training when we incorpo-
rated the scheduling of learning rate for the model.

We also increased the number of dropout layers, but used
a lower dropout ratio to keep the overfitting in check. We
got rid of the parametric ReLU and used ordinary ReLU
instead. We used a batch size of 5 in contrast to the original
paper where they’d used 1 during training.

2. Related Work

2.1. CNN and 3D U-Net

Brain tumor segmentation methods include generative
and discriminative approaches.The biggest breakthrough in
this area was introduced by DeepMedic[2] a 3D CNN that
exploits multi-scale features using parallel pathways and
incorporates a fully connected conditional random field
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Figure 1. 3D U-Net Architecture

(CRF) to remove false positives[10]. FCN is the main ar-
chitecture for many semantic segmentation tasks. Further-
more, residual connection is used in the UNet, which is
called Res-U-Net[4]. Chen et al.[3] suggested an approach
based on atrous convolutional and pooling layers for seg-
mentation. This is called DeepLab. DeepLabV3 is another
form of DeepLab. They used few convolutional layers in the
decoder path. A FCNN was proposed in [11] for segment-
ing isointense phase brain MR images. Instead of simply
stacking the three modalities at the network input, the net-
work in [11] processes each modality within an independent
path. The final segmentation is obtained by fusing the en-
suing paths. These approaches have some important draw-
backs. These networks use 2D patches as input. In paper
[2, 6] authors consider 3D data as input rather than slice-
by-slice to improve the segmentation accuracy. 3D-UNet
was introduced by Cicek [5], in which contracting skip lay-
ers and learned up-sampling parts to get the full resolution
of segmentation were proposed.

2.2. Ensemble models

Kao et al. [9] proposed a three step process for survival
prediction of patients. In the first step, an ensemble of le-
sion occurrence probabilities in structural regions with MR
images and a patch-based neural network were proposed for
the brain tumor segmentation. Ali et al. [1] proposed an en-
semble model of 2D and 3D Convolutional Neural Network
(CNN) for brain tumor segmentation. Then multiple ra-
diomic and image-based features were extracted from MRI
images and segmented regions. Finally, a classification al-
gorithm was applied to predict the overall survival of the
patient.

3. Methodology

The steps in our proposed method include data load-
ing, pre-processing of the images, training multiple models

using a generic 3D U-Net structure with different hyper-
parameters, deployment of each model and the final ensem-
ble step. The description of the methodological details are
in the following sections.

3.1. Preprocessing

Patch Extraction. There are several challenges in di-
rectly using the whole image as the input to a 3D UNet: (1)
the memory of a moderate GPU is often 12Gb so fitting the
model into the GPU might affect performance; (2) the train-
ing time will be greatly prolonged; (3) as the background
voxels dominate the whole image, there will be class im-
balance. Therefore, to more effectively utilize the training
data, smaller patches were extracted from each subject[7].

For data preparation, all four modalities of the MRI vol-
ume are concatenated together along the dimensions(B, H,
W, D, Channels). The segmentation data is encoded to
one-hot tensors. During each epoch of the training pro-
cess, a random patch was extracted from each subject us-
ing the foreground tumor mask with uniform probabilities.
This patch varies every time because the tumor might be
in different forms, regions, size and shape. The resultant
patch is now resized to 64x64x64 by either cropping or
padding. This padding is done dependent on the position of
the cropped image. If it’s towards the left, adding padding
to the left adds zero data which doesn’t add any value to the
model; rather we will add padding to the right so the model
can learn the healthy background voxels and vice versa. The
patch size was decided after considering average tumor size,
and the computation power available to us.

3.2. Model architecture

A 3D U-Net based network was used as the base struc-
ture, as shown in Fig1 For each encoding block, a VGG-like
network[13] with two consecutive 3D convolutional layers
of kernel size 3 followed by the activation function(ReLU)
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Model N M f
Model1 3 64 64
Model2 3 96 48
Model3 4 96 24

Table 1. Table of Hyperparamaters

and batch normalization layers were used. The ReLU func-
tion is defined as,

f(x) = max(0, x) (1)

Similar to the conventional UNet structure, the number
of features were doubled while the spatial dimension was
halved with every encoding block. A dropout layer with ra-
tio 0.2 was added after the last encoding block. Symmetric
decoding blocks were used with skip-connections from cor-
responding encoding blocks. Features were concatenated to
the de-convolution outputs. Weighted dice loss was used as
the loss function.

Wu et al.[16]suggested that a wider network with large
number of features and a deeper network can increase the
expressiveness and thus performance of the network ; fur-
thermore, the larger the patch size, the more spatial informa-
tion to be used in one patch; however, as mentioned before,
the memory of the GPU is often a limiting factor with 3D in-
puts and we have limited GPU powers. In our study, we bal-
anced the three parameters to make sure that the GPU mem-
ory is sufficient while favoring one in one model. The exact
choice of these parameters was made empirically. Given the
limited time for training and testing, a total of three models
was selected, with detailed parameters shown in Table 1. N
denotes the input patch size, M denotes the number of en-
coding/decoding blocks and f denotes the input features at
the first layer. Dice loss is separately computed for each
class and combined using weights which is the inverse of
the class size.Dice loss is calculated as follows,

DL = 1−DSC (2)

As already mentioned, even though an entire image can
be given as input to the model, there are computational lim-
itations and the input cannot fit into the memory during de-
ployment. Thus a sliding window approach needs to be used
to get the output for each subject. A stride size at a frac-
tion of the window size was used and the output probability
was averaged. In implementation, the deployment window
size was chosen to be the same as the training window size,
and the stride was chosen as ½ of the window size. Al-
though smaller stride sizes can be used to further improve
the accuracy with more averages, the deployment time will
be increased 8 times for every ½ reduction of the window
size and thus quickly becomes unmanageable. Using the
parameters as mentioned on the same GPU, it took about 1

min to generate the output for the entire volume per subject.
Instead of performing a thresholding on the probability out-
put to get the final labels, the direct probability output after
the last convolutional layer was saved for each model as
a measure of “confidence” for each model. The ensemble
modeling process was rather straightforward. The probabil-
ity output of all classes from each model was averaged to
get the final probability output. The class with the highest
probability was selected as the final segmentation label for
each voxel.

3.3. Post Processing.

Our initial attempt to down-scale the input image to
NxNxN and up-scaling the segmented results didn’t pro-
vide desired results. Hence, we used an approach where
we extract the patches in a sliding window and feed to the
model, and finally the results are stitched together. Binary
closing is done on the result to fill the holes. Segmentation
classes are combined to obtain ”Enhancing tumor” (ET),
the ”Tumor core” (TC=ET+NCR), and the ”Whole tumor”
(WT=TC+ED).

Model Dice Score Hausdroff Distance
# WT TC ET WT TC ET
1 0.756 0.761 0.711 4.56 6.98 5.03
2 0.812 0.756 0.702 4.02 8.22 4.78
3 0.804 0.732 0.724 4.33 7.64 4.56

Ensemble 0.805 0.769 0.735 3.84 6.72 4.23

Table 2. Performance of the models

4. Experiments and Results
4.1. DataSet

The datasets used in this study are collected by sign-
ing up in synapse.org. The data set was made avail-
able for research by the BraTS challenge organizers and
contains clinically-acquired preoperative multimodal MRI
scans of glioblastoma (GBM/HGG) and low-grade glioma
(LGG) containing (a) native (T1) and (b) post-contrast T1-
weighted (T1Gd), (c) T2-weighted (T2), and (d) Fluid At-
tenuated Inversion Recovery (FLAIR) volumes from mul-
tiple institutions. They were acquired following differ-
ent clinical protocols and from various scanners. All the
datasets were segmented manually, by one to four raters,
following the same annotation protocol, and their anno-
tations were approved by experienced neuro-radiologists.
Annotations comprise the GD-enhancing tumor (ET-label
4), the peritumoral edema (ED-label 2), and the necrotic and
non-enhancing tumor core (NCR/NET-label 1). The latest
challenge provides 1251 cases, but from previous works,
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Figure 2. Segmented sub-regions from models 1-3 and the ensemble model is compared with the ground truth for case BraTS2021-00346.

decent results were obtained from lesser data. By keep-
ing our computational power in mind, we have used 300
cases for training, 70 for validating the model performance
at each iteration, and 200 for testing the model performance.
The batch size chosen is 5 for the data sequence generator.
For data preparation, all four modalities of the MRI volume
of a particular case were concatenated together along the di-
mensions(B, H, W, D, Channels). The segmentation data is
encoded to one-hot tensors of shape (B, H, W, D,Classes).

4.2. Implementation details

As mentioned above, the UNET architecture was config-
ured with three different settings of hyperparameters as tab-
ulated in Table1 Training was performed on a Google Colab
Pro with 80 Gb of GPU-RAM. For each hyperparameter set-
ting, the model was trained for 30 epochs.. Subject orders
were randomly permuted every epoch. The model initial-
ization and training were done on Python 3.8 + Tensorflow
2.x framework. Batch size was set to 5 during training. The
Adam optimizer was used with an initial learning rate of
10−4 along with a reduction of learning rate when the loss
stops decreasing. The best model was saved at each step of
improvement. The total training time was about 10 hrs.

All 300 training subjects were used in the training pro-
cess. 70 subjects were provided as validation. The dice
indexes are calculated as follows,

DSC =
2TP + ϵ

FP + 2TP + FN + ϵ
(3)

and 95% Hausdorff distances of ET, WT and TC are cal-
culated as follows,

h(A,B) = max
a∈A

{min
b∈B

{ d(a, b) } } (4)

H(A,B) = min{ h(a, b) , h(b, a)} (5)

ET corresponds to label 4 in the direct output label maps;
WT is the union of all non-background label maps including
label 1, 2, and 4; TC is the union of ET and NCR/NET, or
label 1 and 4.

4.3. Results

Table2, shows the mean Dice scores (Dice) and 95%
Hausdorff distances of ET, WT and TC in mm for the 3 in-
dividual models and the ensemble of them. The model with
the best performance of each metric is highlighted. For WT,
all 3D U-Net models perform similarly. However, model 3
has the highest Dice for ET. The rankings based on Dice
scores are also not consistent with the rankings based on
the distance measures. This shows that no single parameter
set has a clear advantage over others. However, the ensem-
ble of them has the best overall Dice scores as compared
with each individual model. The distance metrics show a
wider range and the ensemble does not achieve the small-
est values. However, as the Hausdorff distance is largely
determined by the “worst” pixels, it may be less reliable in
obtaining an overall performance evaluation as compared
with Dice scores. Despite this, the metrics in the ensemble
method for all three sub-regions are all on the lower end,
showing increased robustness.

Fig.2 shows the result of the automatically segmented
brain tumors from all the 3 models and its ensemble. A
single model may suffer from under- or over-segmentation
while the average of multiple models achieves a more sta-
ble performance, which is also closer to the ground-truth,
as shown with the improved Dice scores. Furthermore, the
ensemble of all 3 models yields a much smoother bound-
ary for different sub-regions and eliminates a few isolated
regions, which are likely false positives.

5. Discussions and Conclusion

From the experiments in training and ensembling we can
conclude that, the hyper-parameters (N, M and F) can sig-
nificantly affect the segmentation performance of the for
different classes differently. Thus by ensembling the results
of these three models, we strike a balance between errors
in segmented labels of different models. Due to time and
computational constraints, we did ensembling of only three
models whereas including a grid search might provide bet-
ter hyper-parameters which is on ongoing research however,
one possible concern is that this may lead to overfitting as
the validation set is much smaller (70 cases) compared with
the training and testing dataset.
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