
A Quantitative Comparison of
Solo and Shared Ride

Sachin K Salim
under the guidance of Swaprava Nath

Department of Computer Science and Engineering

IIT Kanpur

February 2, 2020

1 / 35

1 Introduction

2 Literature Review

3 Ridesharing problem (RSP)

4 NP-hardness

5 Optimal Solution Algorithm

6 Approximate algorithms

7 Simulation

8 Future directions

2 / 35

Introduction

In urban India, it’s observed that people prefer travelling alone rather
than pooling their ride for day-to-day activities even though the latter
offers cheaper fare.

This could be attributed to a variety of reasons including comfort,
waiting time and security.

But if more people prefer to pool their rides in a locality, the total
distance travelled by all the cars reduces, thereby saving fuel and
making a lesser impact on environment.

We make an attempt to quantify this improvement by modelling the
locations in a city on a graph comparing the expected lengths of
shortest routes when all passengers travel solo to that of shared ride.

3 / 35

Introduction

In urban India, it’s observed that people prefer travelling alone rather
than pooling their ride for day-to-day activities even though the latter
offers cheaper fare.

This could be attributed to a variety of reasons including comfort,
waiting time and security.

But if more people prefer to pool their rides in a locality, the total
distance travelled by all the cars reduces, thereby saving fuel and
making a lesser impact on environment.

We make an attempt to quantify this improvement by modelling the
locations in a city on a graph comparing the expected lengths of
shortest routes when all passengers travel solo to that of shared ride.

3 / 35

1 Introduction

2 Literature Review

3 Ridesharing problem (RSP)

4 NP-hardness

5 Optimal Solution Algorithm

6 Approximate algorithms

7 Simulation

8 Future directions

4 / 35

Literature Review

In a paper by M. Furuhuta et. al, the authors discuss about the
history of ridesharing and classify it based on the target market,
service type, matching activity, pricing policy, etc.

D. C. Parkes et. al, proposed a new pricing mechanism called
Spatio-Temporal Pricing that is smooth in space and time. This
ensures that drivers will not reject the trip dispatched to them and
keeps them from flocking in a particular area for higher prices.

Almost the entire literature in ridesharing is focused on optimizing the
ride for passengers and drivers. Here, our focus is on matching the
passengers to a driver such that there is least impact on the
environment.

5 / 35

Literature Review

In a paper by M. Furuhuta et. al, the authors discuss about the
history of ridesharing and classify it based on the target market,
service type, matching activity, pricing policy, etc.

D. C. Parkes et. al, proposed a new pricing mechanism called
Spatio-Temporal Pricing that is smooth in space and time. This
ensures that drivers will not reject the trip dispatched to them and
keeps them from flocking in a particular area for higher prices.

Almost the entire literature in ridesharing is focused on optimizing the
ride for passengers and drivers. Here, our focus is on matching the
passengers to a driver such that there is least impact on the
environment.

5 / 35

1 Introduction

2 Literature Review

3 Ridesharing problem (RSP)

4 NP-hardness

5 Optimal Solution Algorithm

6 Approximate algorithms

7 Simulation

8 Future directions

6 / 35

Ridesharing problem (RSP)

Problem Statement

Given a city with a list of passengers having a pickup point and a drop-off
point, what is the shortest route of a driver to pick up all passengers and
drop them off given the driver’s current location?

7 / 35

Notations

P = 1, 2, . . . , k : Set of passengers in ridesharing.

L ⊂ N× N, Set of locations.

pi , di ∈ L: pickup and drop-off locations of passenger i

δ : L × L → N where δ(a, b) gives the distance between locations a
and b. For simplicity we take δ to be the manhattan distance.

D : the driver.

oD ∈ L : origin of the driver D, i.e., the initial location.

C: Capacity of D’s vehicle.

R: Set of feasible routes of D.

r ∈ R: A sequence of locations in L

8 / 35

Notations

P = 1, 2, . . . , k : Set of passengers in ridesharing.

L ⊂ N× N, Set of locations.

pi , di ∈ L: pickup and drop-off locations of passenger i

δ : L × L → N where δ(a, b) gives the distance between locations a
and b. For simplicity we take δ to be the manhattan distance.

D : the driver.

oD ∈ L : origin of the driver D, i.e., the initial location.

C: Capacity of D’s vehicle.

R: Set of feasible routes of D.

r ∈ R: A sequence of locations in L

8 / 35

Notations

P = 1, 2, . . . , k : Set of passengers in ridesharing.

L ⊂ N× N, Set of locations.

pi , di ∈ L: pickup and drop-off locations of passenger i

δ : L × L → N where δ(a, b) gives the distance between locations a
and b. For simplicity we take δ to be the manhattan distance.

D : the driver.

oD ∈ L : origin of the driver D, i.e., the initial location.

C: Capacity of D’s vehicle.

R: Set of feasible routes of D.

r ∈ R: A sequence of locations in L

8 / 35

Feasible route

A route r is feasible iff it satisfies the following three conditions:

1 The route r covers all the passengers’ pickup and drop-off point.
Thus |r | = 2|P|.

2 The pickup point of a passenger i comes before the drop-off point for
all i ∈ P.

3 At any location a ∈ r , number of pickups until a must not be more
than the sum of number of drop-offs until a and the capacity C.

9 / 35

Feasible route

A route r is feasible iff it satisfies the following three conditions:

1 The route r covers all the passengers’ pickup and drop-off point.
Thus |r | = 2|P|.

2 The pickup point of a passenger i comes before the drop-off point for
all i ∈ P.

3 At any location a ∈ r , number of pickups until a must not be more
than the sum of number of drop-offs until a and the capacity C.

9 / 35

Feasible route

A route r is feasible iff it satisfies the following three conditions:

1 The route r covers all the passengers’ pickup and drop-off point.
Thus |r | = 2|P|.

2 The pickup point of a passenger i comes before the drop-off point for
all i ∈ P.

3 At any location a ∈ r , number of pickups until a must not be more
than the sum of number of drop-offs until a and the capacity C.

9 / 35

Objective

Our objective is to find the shortest length route r∗ ∈ R such that

r∗ = argmin
r∈R

|r |−1∑
i=1

δ(ri , ri+1)

where ri is the i th location in the route r .

10 / 35

Approach

Solo riding problem

An order (π1, . . . , πk) is decided over the k passengers.

The driver D picks up each of these passengers and then drops them
off before picking another passenger in the order given by π.

The algorithm would have to figure out the order of the passengers to
be followed so that the total length of the travel route is minimized.

11 / 35

Approach

Shared riding problem

All permutations of (p1, d1, . . . , pk , dk) are considered such that:

pi comes before di for all i ∈ P
the occupied passengers do not cross the capacity of cab

when the passengers are served in the given order.

The problem is to find out the order that minimizes the cost of the
total travel.

12 / 35

Sample routes

Figure: Left: A sample solo-ride route (Distance = 36)
Right: A sample shared-ride route (Distance = 26)

13 / 35

Our objective

Our objective

The problem in hand is to compare the following two values:

minimum cost path in solo-riding

minimum cost path in shared-riding

14 / 35

1 Introduction

2 Literature Review

3 Ridesharing problem (RSP)

4 NP-hardness

5 Optimal Solution Algorithm

6 Approximate algorithms

7 Simulation

8 Future directions

15 / 35

Open Travelling Salesman Problem (OTSP)

Open Travelling Salesman Problem

OTSP is a variation of TSP in which the salesman does not return to the
starting point. The problem is to find out the shortest Hamiltonian path in
a graph G starting from a given vertex.

Formal definition of OTSP

Given a complete graph G = (V ,E) with positive weighted edges and a
starting vertex s ∈ V , determine if there exists a Hamiltonian path whose
sum of weights of edges in the path is not more than a given number k .

16 / 35

NP-hardness of OTSP

Input: graph G ; an instance of Hamiltonian path problem.
Output: graph G ′; by the reduction of HP to OTSP.

1 Create a complete graph G ′(V ′,E ′) with V ′ = V , s ′ = s and
E ′ = {(i , j) : i , j ∈ V , i 6= j}.

2 Define the weight function w : E → N as:

w(e) =

{
0 if e ∈ E

1 if e /∈ E

3 Pass the instance (G ′, 0) as input to the OTSP problem.

17 / 35

NP-hardness of OTSP

Input: graph G ; an instance of Hamiltonian path problem.
Output: graph G ′; by the reduction of HP to OTSP.

1 Create a complete graph G ′(V ′,E ′) with V ′ = V , s ′ = s and
E ′ = {(i , j) : i , j ∈ V , i 6= j}.

2 Define the weight function w : E → N as:

w(e) =

{
0 if e ∈ E

1 if e /∈ E

3 Pass the instance (G ′, 0) as input to the OTSP problem.

17 / 35

NP-hardness of OTSP

A Hamiltonian path exists in G starting from s
=⇒ the cost of each corresponding edge in G ′ would be 0.
=⇒ the total cost of that HP in G ′ would be 0.

No HP exists in G
=⇒ The cost of any HP in G ′ must be more than 0.

G has a Hamiltonian path starting at s ⇐⇒ G ′ has a Hamiltonian path
of cost at most 0 starting at s ′ .
Hence, OTSP is NP-hard.

18 / 35

NP-hardness of OTSP

A Hamiltonian path exists in G starting from s
=⇒ the cost of each corresponding edge in G ′ would be 0.
=⇒ the total cost of that HP in G ′ would be 0.

No HP exists in G
=⇒ The cost of any HP in G ′ must be more than 0.

G has a Hamiltonian path starting at s ⇐⇒ G ′ has a Hamiltonian path
of cost at most 0 starting at s ′ .
Hence, OTSP is NP-hard.

18 / 35

NP-hardness of OTSP

A Hamiltonian path exists in G starting from s
=⇒ the cost of each corresponding edge in G ′ would be 0.
=⇒ the total cost of that HP in G ′ would be 0.

No HP exists in G
=⇒ The cost of any HP in G ′ must be more than 0.

G has a Hamiltonian path starting at s ⇐⇒ G ′ has a Hamiltonian path
of cost at most 0 starting at s ′ .
Hence, OTSP is NP-hard.

18 / 35

NP-hardness of RSP

solo-RSP
We are given a graph G (V ,E), an instance of OTSP problem and we
show here how to convert this to an instance of solo-RSP.

Define a bijective map ψ : V → L, from vertex set V to locations L.

Construct a driver D with origin as oD := ψ(s).

Construct |V | − 1 passengers with each passenger’s pickup and
drop-off location, pi = di = ψ(vi), vi ∈ V /s.

Define δ(a, b) := w(ψ−1(a), ψ−1(b))

It is evident from the above definition that an HP with length ≤ k starting
at s exists in OTSP instance iff a route exists in the translated solo-RSP
instance with length ≤ k and driver’s origin at oD. Hence, solo-RSP is
NP-hard.

19 / 35

NP-hardness of RSP

solo-RSP
We are given a graph G (V ,E), an instance of OTSP problem and we
show here how to convert this to an instance of solo-RSP.

Define a bijective map ψ : V → L, from vertex set V to locations L.

Construct a driver D with origin as oD := ψ(s).

Construct |V | − 1 passengers with each passenger’s pickup and
drop-off location, pi = di = ψ(vi), vi ∈ V /s.

Define δ(a, b) := w(ψ−1(a), ψ−1(b))

It is evident from the above definition that an HP with length ≤ k starting
at s exists in OTSP instance iff a route exists in the translated solo-RSP
instance with length ≤ k and driver’s origin at oD. Hence, solo-RSP is
NP-hard.

19 / 35

NP-hardness of RSP

solo-RSP
We are given a graph G (V ,E), an instance of OTSP problem and we
show here how to convert this to an instance of solo-RSP.

Define a bijective map ψ : V → L, from vertex set V to locations L.

Construct a driver D with origin as oD := ψ(s).

Construct |V | − 1 passengers with each passenger’s pickup and
drop-off location, pi = di = ψ(vi), vi ∈ V /s.

Define δ(a, b) := w(ψ−1(a), ψ−1(b))

It is evident from the above definition that an HP with length ≤ k starting
at s exists in OTSP instance iff a route exists in the translated solo-RSP
instance with length ≤ k and driver’s origin at oD. Hence, solo-RSP is
NP-hard.

19 / 35

NP-hardness of RSP

solo-RSP
We are given a graph G (V ,E), an instance of OTSP problem and we
show here how to convert this to an instance of solo-RSP.

Define a bijective map ψ : V → L, from vertex set V to locations L.

Construct a driver D with origin as oD := ψ(s).

Construct |V | − 1 passengers with each passenger’s pickup and
drop-off location, pi = di = ψ(vi), vi ∈ V /s.

Define δ(a, b) := w(ψ−1(a), ψ−1(b))

It is evident from the above definition that an HP with length ≤ k starting
at s exists in OTSP instance iff a route exists in the translated solo-RSP
instance with length ≤ k and driver’s origin at oD. Hence, solo-RSP is
NP-hard.

19 / 35

NP-hardness of RSP

shared-RSP

Shared RSP is a superclass of solo-RSP problem as it deals with
capacity of cab with any finite natural number.

Since the instances over which the minimum is to be found out in
shared-RSP is a superset of that of solo-RSP, it’s intuitive that
shared-RSP is also NP-hard.

20 / 35

1 Introduction

2 Literature Review

3 Ridesharing problem (RSP)

4 NP-hardness

5 Optimal Solution Algorithm

6 Approximate algorithms

7 Simulation

8 Future directions

21 / 35

Dynamic Programming Approach

Let’s discuss the DP approach [5] to solve OTSP problem. This algorithm
runs in O(k2 ∗ 2k) time where k is the number of passengers.

Algorithm

V = set of vertices;
s = starting vertex;
w(a, b) = weight of the edge (a, b);
for S ⊆ V with |S| = 2 and s ∈ S do

C (S, i) = w(s, i);
end

22 / 35

Dynamic Programming Approach

Algorithm contd.

for k ← 2 to n − 1 do
for S ⊆ V with |S| = k and s ∈ S do

for i ∈ S \ {s} do
C (S, i) = min{C (S \ {i}, j) + w(j , i)} ∀j ∈ S \ {i , s};

end

end

end

C (V) =∞;
for i ∈ V \ {s} do

C (V, i) = min{C (V \ {i}, j) + w(j , i)} ∀j ∈ V \ {i , s};
C (V) = min(C (V),C (V, i));

end
Result: C (V)

23 / 35

Dynamic Programming Approach

Algorithm contd.

for k ← 2 to n − 1 do
for S ⊆ V with |S| = k and s ∈ S do

for i ∈ S \ {s} do
C (S, i) = min{C (S \ {i}, j) + w(j , i)} ∀j ∈ S \ {i , s};

end

end

end
C (V) =∞;
for i ∈ V \ {s} do

C (V, i) = min{C (V \ {i}, j) + w(j , i)} ∀j ∈ V \ {i , s};
C (V) = min(C (V),C (V, i));

end
Result: C (V)

23 / 35

Pricing

The fare of passenger i ∈ P is given by Shapley value [1] defined as
follows:

Shi (P, v) =
α

n!

∑
S⊆P\{i}

|S |! (|P| − |S | − 1)!
(
v(S ∪ {i})− v(S)

)
where α is the fare per unit distance and v(S) for any S ⊆ P is the length
of the shortest route to serve all the passengers in S and none of the
passengers not in S .

The Shapley value fare ensures individual rationality by distributing the
total fare among the passengers in such a way that no passenger pays
more for solo ride than shared ride.

24 / 35

Pricing

The fare of passenger i ∈ P is given by Shapley value [1] defined as
follows:

Shi (P, v) =
α

n!

∑
S⊆P\{i}

|S |! (|P| − |S | − 1)!
(
v(S ∪ {i})− v(S)

)
where α is the fare per unit distance and v(S) for any S ⊆ P is the length
of the shortest route to serve all the passengers in S and none of the
passengers not in S .
The Shapley value fare ensures individual rationality by distributing the
total fare among the passengers in such a way that no passenger pays
more for solo ride than shared ride.

24 / 35

1 Introduction

2 Literature Review

3 Ridesharing problem (RSP)

4 NP-hardness

5 Optimal Solution Algorithm

6 Approximate algorithms

7 Simulation

8 Future directions

25 / 35

Approximate algorithm using MST

We’ll show here an approximate algorithm to OTSP. Using the solution to
this algorithm, we could compute the solution to the solo RSP problem by
translating this solution.
We describe a method [4] to get a 2-approximate solution to solo-ride
ridesharing problem.

Algorithm

1 Construct Minimum Spanning Tree T of G with oS as root using
Prim’s Algorithm.

2 Let W be the pre-order walk in T . A pre-order walk is a sequence of
vertices visited in the order of DFS of T along with its return. See
fig: 2 for an example.

3 Return the Hamiltonian tour Rapx visited in the order of the above
pre-order walk.

26 / 35

Approximate algorithm using MST

We’ll show here an approximate algorithm to OTSP. Using the solution to
this algorithm, we could compute the solution to the solo RSP problem by
translating this solution.
We describe a method [4] to get a 2-approximate solution to solo-ride
ridesharing problem.
Algorithm

1 Construct Minimum Spanning Tree T of G with oS as root using
Prim’s Algorithm.

2 Let W be the pre-order walk in T . A pre-order walk is a sequence of
vertices visited in the order of DFS of T along with its return. See
fig: 2 for an example.

3 Return the Hamiltonian tour Rapx visited in the order of the above
pre-order walk.

26 / 35

Approximate algorithm using MST

We’ll show here an approximate algorithm to OTSP. Using the solution to
this algorithm, we could compute the solution to the solo RSP problem by
translating this solution.
We describe a method [4] to get a 2-approximate solution to solo-ride
ridesharing problem.
Algorithm

1 Construct Minimum Spanning Tree T of G with oS as root using
Prim’s Algorithm.

2 Let W be the pre-order walk in T . A pre-order walk is a sequence of
vertices visited in the order of DFS of T along with its return. See
fig: 2 for an example.

3 Return the Hamiltonian tour Rapx visited in the order of the above
pre-order walk.

26 / 35

Approximate algorithm using MST

We’ll show here an approximate algorithm to OTSP. Using the solution to
this algorithm, we could compute the solution to the solo RSP problem by
translating this solution.
We describe a method [4] to get a 2-approximate solution to solo-ride
ridesharing problem.
Algorithm

1 Construct Minimum Spanning Tree T of G with oS as root using
Prim’s Algorithm.

2 Let W be the pre-order walk in T . A pre-order walk is a sequence of
vertices visited in the order of DFS of T along with its return. See
fig: 2 for an example.

3 Return the Hamiltonian tour Rapx visited in the order of the above
pre-order walk.

26 / 35

Approximate algorithm using MST

Figure: Example: Pre-order walk (credits: [4])

27 / 35

Approximate algorithm using MST

Proof
The above algorithm runs in polynomial time since Prim’s Algorithm has a
polynomial complexity.
Let Ropt be the shortest Hamiltonian tour in G . Let C (Se) is the sum of
the weights of the edges in Se .

Since W is the MST,
C (T) ≤ C (Ropt)

since Ropt is also a spanning tree.
Since in the pre-order walk W, every edge is visited twice except the final
few edges since it doesn’t come back to the starting point,

c(W) ≤ 2 ∗ C (T)

. Combining both the inequalities above, we get,

c(W) ≤ 2 ∗ C (Ropt)

28 / 35

Approximate algorithm using MST

Proof
The above algorithm runs in polynomial time since Prim’s Algorithm has a
polynomial complexity.
Let Ropt be the shortest Hamiltonian tour in G . Let C (Se) is the sum of
the weights of the edges in Se .
Since W is the MST,

C (T) ≤ C (Ropt)

since Ropt is also a spanning tree.

Since in the pre-order walk W, every edge is visited twice except the final
few edges since it doesn’t come back to the starting point,

c(W) ≤ 2 ∗ C (T)

. Combining both the inequalities above, we get,

c(W) ≤ 2 ∗ C (Ropt)

28 / 35

Approximate algorithm using MST

Proof
The above algorithm runs in polynomial time since Prim’s Algorithm has a
polynomial complexity.
Let Ropt be the shortest Hamiltonian tour in G . Let C (Se) is the sum of
the weights of the edges in Se .
Since W is the MST,

C (T) ≤ C (Ropt)

since Ropt is also a spanning tree.
Since in the pre-order walk W, every edge is visited twice except the final
few edges since it doesn’t come back to the starting point,

c(W) ≤ 2 ∗ C (T)

. Combining both the inequalities above, we get,

c(W) ≤ 2 ∗ C (Ropt)

28 / 35

Approximate algorithm using MST

Now, observe that R is effectively a ‘short-cut’ of W since no vertices are
visited are visited twice in R unlike W because the vertices are visited
directly without tracing the route back. Under the assumption of triangle
inequality, this would give

c(Rapx) ≤ C (W)

and thus we have proved that

c(Rapx) ≤ C (Ropt)

Note: If the triangle inequality doesn’t hold in G , we can return W instead
of Rapx since our original problem doesn’t prevent us from visiting the
same vertex twice.

29 / 35

Approximate algorithm using MST

Now, observe that R is effectively a ‘short-cut’ of W since no vertices are
visited are visited twice in R unlike W because the vertices are visited
directly without tracing the route back. Under the assumption of triangle
inequality, this would give

c(Rapx) ≤ C (W)

and thus we have proved that

c(Rapx) ≤ C (Ropt)

Note: If the triangle inequality doesn’t hold in G , we can return W instead
of Rapx since our original problem doesn’t prevent us from visiting the
same vertex twice.

29 / 35

1 Introduction

2 Literature Review

3 Ridesharing problem (RSP)

4 NP-hardness

5 Optimal Solution Algorithm

6 Approximate algorithms

7 Simulation

8 Future directions

30 / 35

Simulation results

The minimum total distance was calculated for a 1000X1000 grid for 1
driver and passengers varying from 1 to 5. The locations of driver and
passengers were generated at random and the average of shortest
distances over 1 lakh iterations were calculated. The following plots show
these results.

Figure: Avg. total distance for solo and shared ride

31 / 35

Simulation results

Figure: Ratio of avg. total distance for solo and shared ride

As we could see from the ratio plot, the ratio

r =
length of shortest solo-ride route

length of shortest shared-ride route
' 1.25

for one driver and 5 passengers. We can see from the plot that this value
is converging to a ratio ' 1.25

32 / 35

1 Introduction

2 Literature Review

3 Ridesharing problem (RSP)

4 NP-hardness

5 Optimal Solution Algorithm

6 Approximate algorithms

7 Simulation

8 Future directions

33 / 35

Future directions

The exponential time complexity of the optimal solution algorithm is
a hindrance in implementing this algorithm in real case scenario.

The NP-hardness of shared-riding is to be proven formally.

An approximation algorithm for shared riding is to be found out such
that the deviation from this approximate solution from optimal
solution is correlated with that of solo-ride. This will enable us to give
a ratio of them for larger number of passengers.

34 / 35

Future directions

The exponential time complexity of the optimal solution algorithm is
a hindrance in implementing this algorithm in real case scenario.

The NP-hardness of shared-riding is to be proven formally.

An approximation algorithm for shared riding is to be found out such
that the deviation from this approximate solution from optimal
solution is correlated with that of solo-ride. This will enable us to give
a ratio of them for larger number of passengers.

34 / 35

Future directions

The exponential time complexity of the optimal solution algorithm is
a hindrance in implementing this algorithm in real case scenario.

The NP-hardness of shared-riding is to be proven formally.

An approximation algorithm for shared riding is to be found out such
that the deviation from this approximate solution from optimal
solution is correlated with that of solo-ride. This will enable us to give
a ratio of them for larger number of passengers.

34 / 35

References

Lloyd S Shapley
“The Shapley value”, Cambridge University Press, 1988

Hongyao Ma, David C. Parkes and Fei Fang
“Spatio-Temporal Pricing for Ridesharing Platforms”

M Furuhata, M Dessouky, F Ordonez, ME Brunet, X
Wang, S Koenig
“Ridesharing: the State-of-the-art and Future Directions”

Arash Rafie
“Approximation Algorithms (Travelling Salesman Problem)”
(URL: http://www.sfu.ca/~A14/lecture25.pdf)

Umesh Vazirani
“Dynamic Programming”
(URL: https://people.eecs.berkeley.edu/~vazirani/
algorithms/chap6.pdf)

35 / 35

http://www.sfu.ca/~A14/lecture25.pdf
https://people.eecs.berkeley.edu/~vazirani/algorithms/chap6.pdf
https://people.eecs.berkeley.edu/~vazirani/algorithms/chap6.pdf

	Introduction
	Literature Review
	Ridesharing problem (RSP)
	NP-hardness
	Optimal Solution Algorithm
	Approximate algorithms
	Simulation
	Future directions

