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Introduction: Mushroom body
● Mushroom body is the learning hub of 

insects:
● Mushroom body is the analog of 

hippocampus and cerebellum. The 
major type of neurons in mushroom 
body is Kenyon Cells (KC)

● Kenyon Cells, receiving combinatory 
olfactory inputs, are the engrams of 
olfactory memory

● Single odor activates an ensemble of 
Kenyon Cells. The sparsity of Kenyon 
Cells activity is critical for odor 
discrimination

Li, Feng, et al. Elife (2020): e62576.

54 olfactory 
receptors

~2000 KCs



Anterior Paired Lateral (APL) Neuron
● APL provides lateral inhibition in 

Mushroom body:

● APL is a giant GABAergic interneuron 
(1 neuron per hemisphere)

● APL neuron integrates inputs from all 
Kenyon Cells and delivers inhibitory 
feedback

● APL is essential for olfactory 
discrimination

● The inhibition from APL is not global

KCs

APL

Amin, Hoger, et al. Elife (2020): e56954.
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Inhibition from APL is not Global
● APL provides local lateral inhibition 

● Not all KCs can inhibit each other 
by APL 

● APL don’t have voltage gated ion 
channels for generating spikes APL

What is the function of this 
local inhibition in the 
mushroom body? Inada, Kengo, et al,Neuron 95.2 (2017): 357-367.
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Research Motivation and Objectives
● Our project aims to explore how APL imposes local inhibition on Kenyon Cells 

and how this inhibition affects olfactory perception and learning processes 
by building and analyzing computational models.

● We seek to understand the impact of APL's inhibitory mechanisms on the 
sparsity of sensory representations and the accuracy of learning by 
simulating these inhibitory processes.
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Previous Model

● Kennedy-MB model
● Simplified LIF model for 

KCs

● Input from experimental 
recording of 110 odors in 
ORNs

● Uniform APL inhibition to 
all KCs 

● We aim to construct local 
inhibition model based on 
Kennedy-MB model

Kennedy, Ann. bioRxiv (2019): 783191.

110 
Odors
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2D KC grid
● KC receive excitatory input from 

Projection Neurons (PNs)

● 2025 KCs arranged as 
45*45 2-D KC matrix to 
simulate their spatial 
relationships

● Each KC randomly receives 6 
inputs from 23 PNs; PNs 
firing rate is from the 
Kennedy-MB model

Modeling



PN-KC connectivity 
● Each KC randomly sample 6 inputs 

from 23 PNs with replacement

● Full(uniform)-random mode: 
All PN have the same weight 
to be sampled

● Recent connectome analysis 
suggests closer KC share 
similar PN-KC connectivity

● Local-random mode: The 
sampling weight of each PN is 
assigned by gaussian 
distributions in the 2-D KC 
space
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Input current to KC
● At each time step, the input 

current to KC from PN is: 

w(PN->KC_i,j): Connectivity of KC i,j
PN: Firing rate of PN
A: Scaling factor

Modeling



Response of KC
● Each KC is implemented as 

Izhikevich 2D LIF model

● For odor1, the input current to 
KC and the respective firing 
rates is visualized for a 
disconnected network

● It’s compared between uniformly 
random and locally random 
connectivity between PN and KC

Modeling



KC Network - Connectivity
● The local forward/feedback 

inhibition of APL is modelled as a 
local lateral inhibition among Kenyon 
Cells

● The connection weight of a 
presynaptic-KC to a postsynaptic KC 
is modeled to decay with distance (as 
a gaussian function)

Connectivity of the KC

Modeling

Each frame shows the connection weight of a 
given KC with other KCs



KC Network - Connectivity
Modeling

A) This figure illustrates how KC 
cells are connected in a 2D grid. The 
center cell (orange) is connected to 
all its neighboring cells but the 
strength decays with distance. 

B) Adjacency matrix showing how the 
KC cells are connected (n=2025 
[45x45], σ = 3) 

C) Plot showing the connectivity 
strength decaying with spatial 
distance. 

D) Adjacency matrix of a smaller 
network for visualization purpose 
(n=121 [11x11], σ = 1.5)



KC Network - How connection params affect sparsity
Modeling

These figures visualize how varying 
inhibition strength and range affects the 
sparsity of KC firing. 
Analysed for odor 1, unif random, 
A = 0.035, taus = 50. 

A) visualizes the maximum input current 
across the time for each of the KC cells. 

B) gsyn = 0 -> sparseness: 0.68 

C) gsyn = -2, σ = 1 -> sparseness: 0.82 

D) gsyn = -5, σ = 1 -> sparseness: 0.856 

E) gsyn = -2, σ = 3 -> sparseness: 0.91



Tuning parameter: Input strength 

● In Kennedy-MB model, a model 
without APL have ~25% KC 
responding to a odor on average

● We randomly select 8 odors and 
tuning A value to achieve this 
sparsity

● When A = 0.005, there are 25% KC 
responding on average
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Result 1: Local inhibition sparsen odor responses

The lifetime sparseness is measured by:

○ N: KC number
○ rj: KCj spikes counts

If all KC respond to the odor 
homogeneously, SKC = 0
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Result 1: Local inhibition sparsen odor responses
Lifetime Sparseness Responding Fraction

gSyn: Inhibition strength

A = 0.005, σ = 10, average of 110 odors 
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Result 1: Local inhibition increases odor separability

● Simplified linear classifier 

● ROC curve

KC responses

odor i
responses

Noisy odor j
responses

> th ?

odor i = odor j

odor i ≠ odor j

Add Gaussian noise to 
“testing data”

Normalized
Euclidean distance

“Training data”

No

Yes

Results

ROC figure:
https://medium.com/@ilyurek/roc-curve-and-auc-evaluating-model-performance-c2178008b02



Result 1: Local inhibition increases odor separability
Fully random PN-KC connection Locally random PN-KC connection
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Result 2: Exploring the effect of inhibition range 
● To change inhibition range(σ), 

we control the sparsity of odor 
responses consistent. In 
Kennedy-MB model, APL will 
suppress KC responding fraction 
to 10%

● We randomly select 8 odors and 
tuning gSyn value to achieve 
this sparsity for each model 
with different inhibition range

● For the same sparsity, model 
with smaller inhibition range 
requires larger gSyn value

Average responding fraction (8 odors)
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Result 2: Exploring the effect of inhibition range 
Lifetime Sparseness Responding Fraction

σ: Inhibition range
A = 0.005, average of 110 odors 
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Fully random PN-KC connection Locally random PN-KC connection

Result 2: Exploring the effect of inhibition range 
Results



Conclusion 
● Local inhibition, a more realistic assumption based on recent 

findings, is able to perform on par with global inhibition models in 
regulating the sparsity of KC outputs

● Stronger inhibition will increase the sparsity, and make the odor 
representations more separable, hence the animal will be able to 
recognise the source odor with higher accuracy  

● Controlling the sparsity and changing inhibition range do not alter 
prediction performance for full random PN-KC connectivity

● Local-random PN-KC connectivity improves the model 
performance compared to uniform/full random connectivity

Through simulations, we have shown that a more physiologically 
realistic model is able to better predict the odors, and thereby 
explain the evolutionary advantage of its existence



Thank you! 

Illustration courtesy: https://magazine.krieger.jhu.edu/fall-2021/humanitys-debt-to-the-lowly-fruit-fly/
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