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Introduction: Mushroom body

Mushroom body is the learning hub of ~2000 KCs
insects: 54 olfactory
e Mushroom body is the analog of receptors > S aohing signals.
hippocampus and cerebellum. The A
major type of neurons in mushroom : + ey Moy Moy
body is Kenyon Cells (KC) 55 :E:;:E;*_'*g_"{
e Kenyon Cells, receiving combinatory ¢ 2 :: :'5 i wi |
olfactory inputs, are the engrams of % 2P I “D I “B B 5
olfactory memory g T
T @ © O
e Single odor activates an ensemble of Voo

Kenyon Cells. The sparsity of Kenyon Bhser by e
Cells activity is critical for odor
discrimination

Li, Feng, et al. Elife (2020): e62576.



Introduction

Anterior Paired Lateral (APL) Neuron

>
Y

e APL provides lateral inhibition in
Mushroom body: APL
e APL is a giant GABAergic interneuron £
(1 neuron per hemisphere) o

e APL neuron integrates inputs from all
Kenyon Cells and delivers inhibitory
feedback

e APL is essential for olfactory
discrimination

e The inhibition from APL is not global

Amin, Hoger, et al. Elife (2020): €56954.



Introduction

Inhibition from APL is not Global

e APL provides local lateral inhibition

e Not all KCs can inhibit each other C
by APL

e APL don't have voltage gated ion
channels for generating spikes

What is the function of this
local inhibition in the
mushroom body?

D
Mz19 KC
e .
1 APLfv/
% 1s
Rec\o;dfng

Inada, Kengo, et al,Neuron 95.2 (2017): 357-367.



Introduction

Research Motivation and Objectives

e Our project aims to explore how APL imposes local inhibition on Kenyon Cells
and how this inhibition affects olfactory perception and learning processes
by building and analyzing computational models.

e We seek to understand the impact of APL's inhibitory mechanisms on the
sparsity of sensory representations and the accuracy of learning by
simulating these inhibitory processes.



Introduction

Previous Model

e Kennedy-MB model
e Simplified LIF model for
KCs

e Input from experimental
recording of 110 odors in
ORNs

e Uniform APL inhibition to
all KCs

e Weaim to construct local
inhibition model based on
Kennedy-MB model

ORNs PNs KCs
(52 types)

oLJe® q N
110 nonlin. non in. g N\
Odors_+‘ . .
® o

LN inhibition (é

APL inhibition

MBON
(52 types) (n=2000) (n=34)

Kennedy, Ann. bioRxiv (2019): 783191.
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Modeling

ZD KC gr'ld 2D KC matrix: | Single KC inputs

@,
e KC receive excitatory input from ®
Projection Neurons (PNs) O 0000
e 2025 KCs arranged as ®0 000
simulate their spatial
relationships
Odor 1
e Each KC randomly receives 6 o —

inputs from 23 PNs; PNs
firing rate is from the
Kennedy-MB model

PN Firing Frequency (Hz)
@ @ =) N =
8 3 5

mmmmm



Modeling

PN-KC connectivity

e Each KC randomly sample 6 inputs
from 23 PNs with replacement

Full-random Mode Local-random Mode

Correlation of randomly selecting weights Correlation of randomly selecting weights

e Full(uniform)-random mode:
All PN have the same weight
to be sampled

index

e e S T e o P Y

|
é
;
g%ﬂ
|

PN sampling weights
Correlation to KC(1,1)

. RecenT ConneCTome analys is """’""“"""”E:ﬂ"—’l'ﬂ!:EER&?&}&E'&RE}SE‘ASERSBS%E?#S@? ¢ ““""""""”"“2:ﬁ‘;’25E':EEEE(}&;&ﬁ&&ﬁ%ﬁ;ﬁ?&ﬁ%ﬁﬁ%gzﬁﬂgﬂ v
S!.IQOQCSTS CIOSCI" KC shqrg Randomly sampling 6 from 23
similar PN-KC connectivity

Correlation of KC connectivity Correlation of KC connectivity

e Local-random mode: The

|
sampling weight of each PN is %é é
assignhed by gaussian g2 §i§
distributions in the 2-D KC 58" :
space o }g
£38 1 .
i

PO RO T PR N ARIRRRERBEIRIBEHBBITYYS
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Modeling

Input current to KC

e At each time step, the input
current to KC from PN is:

— x b S
I(®) = A Yok, PN(¢t)

w(PN->KC_i,j): Connectivity of KC i,j
PN: Firing rate of PN
A: Scaling factor

Odor 1
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Modeling

Reset condition: If 7> 30, thenset V=candu=u+d

Response of KC

Each KC is implemented as
Izhikevich 2D LIF model

dv
5:0.04v2+sv+140 —u+1

du = a(bV
7 = a( u)

Parameter values: ¢ =0.02,5=0.2,¢c=-65,d=8

For odorl, the input current to
KC and the respective firing
rates is visualized for a
disconnected network

It's compared between uniformly
random and locally random
connectivity between PN and KC

A B Uniform random C Locally random

KC input cur

KC firing from odor 1 KC firing from odor 1

Figure. A) Input currents for odor 1 visualized for three sample KC

B, C) Input currents (max) visualized as a raster plot for all KC for uniform
and local connectivity

D, E) The output firing rate of KC in a disconnected network



Modeling

KC Network - Connectivity

Vertical Slice atx =4 Connectivity of the KC

e The local forward/feedback
inhibition of APL is modelled as a
local lateral inhibition among Kenyon

10 10

20 20

Cells | T —] %y,

e The connection weight of a op— 40
presynaptic-KC to a postsynaptic KC 0 05 1 0 20 30 40
is modeled to decay with distance (as . Horizonta Sice aty =33

a gaussian function)

r
0.5

Wsyn () =¢

20

Each frame shows the connection weight of a
given KC with other KCs



Modeling

KC Network - Connectivity

A) This figure illustrates how KC
cells are connected in a 2D grid. The

center cell (orange) is connected to A
all its neighboring cells but the 00000
strength decays with distance. g %8P g
: , : A i\
B) Adjacency matrix showing how the ® 0:600 0
KC cells are connected (n=2025 0000

2
KCx

[45x45], 0 = 3)

C ; Decay of connectivity weight with distance Connectivity of KC(6, 6)

C) Plot showing the connectivity
strength decaying with spatial
distance.

D) Adjacency matrix of a smaller T N -
network for visualization purpose
(n=121 [11x11], 0 = 1.5)
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KC Network - How connection params affect sparsity

Applied current to each KC Disconnected Inhibitor’
A pPp B C y

KCinput

Total firing (Sp: 0.676)

These figures visualize how varying R .
inhibition strength and range affects the Lk
sparsity of KC firing. " .

Total firing
-

Analysed for odor 1, unif random, Ry L !
A = 0.035, taus = 50. % o - :
A) visualizes the maximum input current L E e e

across the time for each of the KC cells. o o
D Higher inhibitory strength E Longer inhibitory range

Total firing (Sp: 0.846) Total firing

B) gsyn = O -> sparseness: 0.68
C)gsyn=-2,0 =1 ->sparseness: 0.82

D) gsyn = -5, 0 = 1 -> sparseness: 0.856

10 15 20 25 30 35 40 45
KC neuron x

E) gsyn = -2, 0 = 3 -> sparseness: 0.91
Figure. These figures visualize how varying inhibition strength and range
affects the sparsity of KC firing. Analysed for odor 1, full random, A = 0.035,
taus = 50. A) visualizes the maximum input current across the time for each
of the KC cells. B) gsyn = 0, result: sparseness: 0.676 C) gsyn = -2, ¢ = 1,
result: sparseness: 0.822 D) gsyn = -5, ¢ = 1, result: sparseness: 0.846 E)
gsyn = -2, ¢ = 3, result: sparseness: 0.912



Modeling

Tuning parameter: Input strength

In Kennedy-MB model, a model
without APL have ~25% KC
responding to a odor on average

We randomly select 8 odors and
tuning A value to achieve this
sparsity

When A = 0.005, there are 25% KC
responding on average

responding KC fraction

0.9

0.8

0.7

A = 0.005

responding KC fraction v.s. A

-
- -
—

= = QOdor1

o= == Odor16 |*

Odor 31
== == Odor 46
== == Odor 61

Odor 76
== == QOdor91 L
= == QOdor 106

w— average
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Results

Result 1: Local inhibition sparsen odor responses

Sparse Responses Dense Responses

The lifetime sparseness is measured by:
Sc = (1= ((E)ar/N) Zjear?/N) )/ = 1/M)

o N: KC number
o it KC, spikes counts

If all KC respond to the odor '
homogeneously, S,.= 0 e e

Responding KC:1.14% Responding KC: 38.77%
Lifetime Sparseness: 0.99 Lifetime Sparseness: 0.61




Results

Result 1: Local inhibition sparsen odor responses

Lifetime Sparseness Responding Fraction
13 1
12
11
1 I -I- -|-
@ g 05
8 09| | g
308 5
207 § T T
= * e .l 1 l | |
0.6 -
0.5
04 -
03 | 1 1 | | ] -05 1 1 1 1 | |
0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25 0.05 0 -0.05 -0.1 -0.15 -0.2 -0.25

gSyn gSyn

gSyn: Inhibition strength

A =0.005, o = 10, average of 110 odors



Results

Result 1: Local inhibition increases odor separability

KC responses

Add Gaussian noise to

“Training data” “testing data”

e Simplified linear classifier

Normalized

[ J ROC curve Od()r i Euclidean distance NOisy OdOrj

responses responses

Perfect
classifier ROC curve
1.0e

E \\ "° odor i # odor |
% 05 ‘e Worse
08,' Yes
2
0.0 " . .
0.0 05 1.0 odor i = odor j

False positive rate



True Postive Rate

Results

Result 1: Local inhibition increases odor separability

Fully random PN-KC connection

Full random connectivity mode ROC
e I 1 I |

1 . 2
No inhibition
gsyn=-0.2

0.9 gsyn=-0.1 ||
gsyn=-0.05
gsyn=-0.02

0.8 gsyn=-0.01 ||

0.7 &

0.6 o

0.5 =

04 =

0.3 -

0.2 -

0.1 |- 7

{
0 | | | | I | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Postive Rate

True Postive Rate
o o o o
w r-N

2
(¥

Locally random PN-KC connection

Local random connectivity mode ROC
I | | I I

|

No inhibition
gsyn=-0.2
gsyn=-0.1
gsyn=-0.05
gsyn=-0.02

gsyn=-0.01 ||

0.3

|
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False Postive Rate
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Results

Result 2: Exploring the effect of inhibition range

Average responding fraction (8 odors)
e To change inhibition range(o), 025
we control the sparsity of odor
responses consistent. In
Kennedy-MB model, APL will 02|
suppress KC responding fraction
to 10%

0.15 -

e We randomly select 8 odors and
tuning gSyn value to achieve

this sparsity for each model
with different inhibition range

mean responding KC fraction

o
o
a

10% KC responding /
e For the same sparsity, model

g /
with smaller inhibition range

requires larger gSyn value —




Results

Result 2: Exploring the effect of inhibition range

Lifetime Sparseness Responding Fraction

£y
[o-]
k—q
—]
'—
.—
'—
Responding KC fracti
I—Z
——
—
—
—

Lifetime Sparsenesses
o £
et

03 | I I | | | I I | | | -0.
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50
o

o: Inhibition range
A = 0.005, average of 110 odors



Results

Result 2: Exploring the effect of inhibition range

Fully random PN-KC connection

Full random connectivity mode ROC
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No inhibition
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Locally random PN-KC connection

Local random connectivity mode ROC
T 1 T T 1
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Conclusion

e Local inhibition, a more realistic assumption based on recent
findings, is able to perform on par with global inhibition models in
regulating the sparsity of KC outputs

e Stronger inhibition will increase the sparsity, and make the odor
representations more separable, hence the animal will be able to
recognise the source odor with higher accuracy

e Controlling the sparsity and changing inhibition range do not alter
prediction performance for full random PN-KC connectivity

e Local-random PN-KC connectivity improves the model
performance compared to uniform/full random connectivity

Through simulations, we have shown that a more physiologically
realistic model is able to better predict the odors, and thereby
explain the evolutionary advantage of its existence



Thank you!
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