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Why Brain Tumour Segmentation?

The project focuses on a more prevalent type of brain tumor
called Gliomas. Gliomas have different degrees of aggressive-
ness, variable prognosis and various heterogeneous histological
sub-regions say,

Necrotic core (NCR)

Peritumoral edema (ED)

Enhancing tumor core (ET)
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Problem Statement

To develop a Brain Tumor Segmentation architecture to seg-
ment tumorous tissues from the healthy tissue and in turn
from different sub-regions of glioma using the clinically acquired
BraTS 2021 dataset.
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Motivation behind this work

This tumor varies greatly in shape, size and appearance which
makes the diagnosis a slow, and an extremely challenging
problem. Developing a reliable machine learning model that
can accurately predict the genetics of cancer could
significantly speed up the process and avoid the requirement
of multiple invasive surgeries and therapies.

7 / 43



About the Dataset

We signed up in synapse.org and downloaded BraTS 2021
data.

Total number of cases - 1252 with a 70:20:10 ratio for Training,
Validation and Testing respectively.

Number of channels/modalities taken is four, say,

Native (T1)
Post-contrast T1-weighted (T1Gd)
T2-weighted (T2), and,
T2 Fluid Attenuated Inversion Recovery (T2-FLAIR)
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Dataloading

A data sequence generator is created which enables multipro-
cessing and avoids loading all data at once to the memory.

The chosen batch size is five.
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Preprocessing

1 Patch extraction

The patch size is chosen as 64 * 64 * 64. Patch size was decided
after considering average tumor size, and the computation power
available to us.

The smallest cuboid (with margin) containing all foreground
(tumor) voxels is found.

In each dimension, if it’s bigger than the expected size, it’s
cropped, else it’s padded to the intended patch size.

2 Data Reshaping

All four modalities of the MRI volume are concatenated
together along the dimensions(B, H, W, D, Channels).

Segmentation data is encoded to one-hot tensors (B, H, W, D,
Classes).
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Implemented three 3D U-Net Models

M: Encoding/decoding layer size
N : Input size
f: Filter size
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Variations to the 3D U-Net Model

Model 1: (M = 3, N = 64, f = 64) [25.7M params]

Model 2: (M = 3, N = 96, f = 48) [14.4M params]

Model 3: (M = 4, N = 96, f = 24) [14.6M params]
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Training

Training requires stochastic gradient-based optimization to min-
imize the cost function with respect to its parameters. We
adopted the adaptive moment estimator (Adam) to esti-
mate the parameters. The parameters are set as: learning rate
= 10−4 and the number of epochs = 30.

Dice loss is separately computed for each class and combined
using weights with respect to class size.

DL = 1− DSC

We are saving the model after each epoch if the model is
improving and accordingly the learning rate is also reduced if
loss converges.
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Training plots
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Training Results

Model 1

Ensemble

Model 2

Ground Truth

Model 3
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Post Processing

Our initial attempt to down-scale the input image to NxNxN
and up-scaling the segmented results didn’t provide desired re-
sults.

Hence, we used an approach where we extract the patches in
a sliding window and feed to the model, and finally the results
are stitched together.

Binary closing is done on the result to fill the holes.

Segmentation classes are combined to obtain ”Enhancing
tumor” (ET), the ”Tumor core” (TC=ET+NCR), and the
”Whole tumor” (WT=TC+ED).
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Evaluation Metrics

Dice Similarity Coefficient

DSC =
2TP + ϵ

FP + 2TP + FN + ϵ

90% Hausdorff distance

h(A,B) = max
a∈A

{min
b∈B

{ d(a, b) } }

H(A,B) = min{ h(a, b) , h(b, a)}
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Tabulated Evaluation Metric
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Future Directions

3D U-Net with attention layers added can potentially yield
better results.

With access to more computational resources, the depth of
the model can be increased or more filters can be added.

41 / 43



Future Directions

3D U-Net with attention layers added can potentially yield
better results.

With access to more computational resources, the depth of
the model can be increased or more filters can be added.

42 / 43



43 / 43


