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Why Brain Tumour Segmentation?

m The project focuses on a more prevalent type of brain tumor
called Gliomas. Gliomas have different degrees of aggressive-
ness, variable prognosis and various heterogeneous histological
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m The project focuses on a more prevalent type of brain tumor
called Gliomas. Gliomas have different degrees of aggressive-
ness, variable prognosis and various heterogeneous histological

sub-regions say,

m  Necrotic core (NCR)

Peritumoral edema (ED)

Enhancing tumor core (ET)
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Problem Statement

m To develop a Brain Tumor Segmentation architecture to seg-
ment tumorous tissues from the healthy tissue and in turn
from different sub-regions of glioma using the clinically acquired
BraTS 2021 dataset.

Multi-modal MR images
Tl Tlce T2 FLAIR

Tumor

Subregions
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Motivation behind this work

m This tumor varies greatly in shape, size and appearance which
makes the diagnosis a slow, and an extremely challenging
problem. Developing a reliable machine learning model that
can accurately predict the genetics of cancer could
significantly speed up the process and avoid the requirement
of multiple invasive surgeries and therapies.
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About the Dataset

m We signed up in synapse.org and downloaded BraTS 2021
data.
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About the Dataset

m We signed up in synapse.org and downloaded BraTS 2021
data.

m Total number of cases - 1252 with a 70:20:10 ratio for Training,
Validation and Testing respectively.

m Number of channels/modalities taken is four, say,

Native (T1)

Post-contrast T1-weighted (T1Gd)

T2-weighted (T2), and,

T2 Fluid Attenuated Inversion Recovery (T2-FLAIR)
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Dataloading

m A data sequence generator is created which enables multipro-
cessing and avoids loading all data at once to the memory.
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Dataloading

m A data sequence generator is created which enables multipro-
cessing and avoids loading all data at once to the memory.
m The chosen batch size is five.

e ————— , . e &|"
® @ [ oaaseT | | DATA LoADER resl wiikitd, s
57 | PAIRS ' | 28000
© | batdh s -
e l Bich-s3e s § [ a,:d’ hated p:.a',-‘.l
@_,fﬁ : 0402 dhollls = Teoe | Bl e
1) :.j’.T—'rr_ | = Shutt e, = e / g 0
——<J- - ‘ﬂl, T _./?
= ®® o 4,138,187 - - —Mexl_—

17/43



Preprocessing

Patch extraction
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Preprocessing

Patch extraction

m The patch size is chosen as 64 * 64 * 64. Patch size was decided
after considering average tumor size, and the computation power
available to us.

m The smallest cuboid (with margin) containing all foreground
(tumor) voxels is found.

m In each dimension, if it's bigger than the expected size, it's
cropped, else it's padded to the intended patch size.

Data Reshaping

m All four modalities of the MRI volume are concatenated
together along the dimensions(B, H, W, D, Channels).

m Segmentation data is encoded to one-hot tensors (B, H, W, D,
Classes).
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Implemented three 3D U-Net Models

i

gt

segmentation
map

i

M: Encoding/decoding layer size

N : Input size
f: Filter size
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Variations to the 3D U-Net Model

m Model 1: (M =3, N = 64, f = 64) [25.7M params]

Total params: 25,679,044
Trainable params: 25,673,412

Non-trainable params: 5,632
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Variations to the 3D U-Net Model

m Model 1: (M =3, N = 64, f = 64) [25.7M params]

Total params: 25,679,044
Trainable params: 25,673,412
Non-trainable params: 5,632

m Model 2: (M =3, N = 96, f = 48) [14.4M params]

Total params: 14,448,532
Trainable params: 14,444,308
Non-trainable params: 4,224

m Model 3: (M =4, N = 96, f = 24) [14.6M params]

Total params: 14,570,764
Trainable params: 14,566,348

Non-trainable params: 4,416
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Training

m Training requires stochastic gradient-based optimization to min-
imize the cost function with respect to its parameters. We
adopted the adaptive moment estimator (Adam) to esti-
mate the parameters. The parameters are set as: learning rate
= 10~% and the number of epochs = 30.
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Training

m Training requires stochastic gradient-based optimization to min-
imize the cost function with respect to its parameters. We
adopted the adaptive moment estimator (Adam) to esti-
mate the parameters. The parameters are set as: learning rate
= 10~% and the number of epochs = 30.

m Dice loss is separately computed for each class and combined
using weights with respect to class size.

DL=1- DSC
m We are saving the model after each epoch if the model is
improving and accordingly the learning rate is also reduced if

loss converges.
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Training plots
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Training Results




Post Processing

m Our initial attempt to down-scale the input image to NxNxN
and up-scaling the segmented results didn't provide desired re-
sults.
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Post Processing

m Our initial attempt to down-scale the input image to NxNxN
and up-scaling the segmented results didn't provide desired re-
sults.

m Hence, we used an approach where we extract the patches in
a sliding window and feed to the model, and finally the results
are stitched together.

m Binary closing is done on the result to fill the holes.

m Segmentation classes are combined to obtain " Enhancing
tumor” (ET), the " Tumor core” (TC=ET+NCR), and the
"Whole tumor” (WT=TC+ED).

37/43



Evaluation Metrics

m Dice Similarity Coefficient

2TP + ¢

D€ = Ep 2TP AN T €
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Evaluation Metrics

m Dice Similarity Coefficient
2TP + ¢

FP+2TP + FN + ¢
m 90% Hausdorff distance

DSC =

h(A,B) = Tea/i({ tr)neig{ d(a,b) }}

H(A, B) = min{ h(a, b), h(b,a)}
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Tabulated Evaluation Metric

Dice Score 90% Hausdorff Distance

Model # T
WT TC ET WT TC ET
i 0,756 0 761 07N 456 698 503
2 0.812 0.756 0702 402 822 4.78
3 0.804 0.732 0.724 433 764 456
Ensemble 0.805 0.769 0.735 3.84 6.72 423
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Future Directions

m 3D U-Net with attention layers added can potentially yield
better results.
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Future Directions

m 3D U-Net with attention layers added can potentially yield
better results.

m With access to more computational resources, the depth of
the model can be increased or more filters can be added.
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